A distinguished historian discusses the introduction of a single technological change in the United States Navy—and comes to some provocative conclusions about the process of change in general

A CASE STUDY OF INNOVATION

by ELTING E. MORISON

IN THE EARLY DAYS of the last war, when armaments of all kinds were in short supply, the British, I am told, made use of a venerable field piece that had come down to them from previous generations. The honorable past of this light artillery stretched back, in fact, to the Boer War. In the days of uncertainty after the fall of France, these guns, hitched to trucks, served as useful mobile units in the coast defense. But it was felt that the rapidity of fire could be increased. A timemotion expert was, therefore, called in to suggest ways to simplify the firing procedures. He watched one of the gun crews of five men at practice in the field for some time. Puzzled by certain aspects of the procedures, he took some slow-motion pictures of the soldiers performing the loading, aiming, and firing routines.

When he ran these pictures over once or twice, he noticed something that appeared odd to him. A moment before the firing two members of the gun crew ceased all activity and came to attention for a three-second interval, extending throughout the discharge of the gun. He summoned an old colonel of artillery, showed him the pictures, and pointed out this strange behaviour. What, he asked the colonel, did it mean? The colonel, too, was puzzled. He asked to see the pictures again. "Ah," he said when the performance was over, "I have it. They are holding the horses."

This story, true or not, and I am told it is true, suggests nicely the pain with which the human being accommodates himself to changing conditions. The tendency is apparently involuntary and immediate to protect oneself against the shock of change by continuing in the presence of altered situations the familiar habits, however incongruous, of the past.

Yet, if human beings are attached to the known, to the realm of things as they are, they also, regrettably for their peace of mind, are incessantly attracted to the unknown and to things as they might be. As Ecclesiastes glumly pointed out, men persist in disordering their settled ways and beliefs by seeking out many inventions. The point is obvious. Change has always been a con-

The point is obvious. Change has always been a constant in human affairs; today, indeed, it is one of the determining characteristics of our civilizaton. In our relatively shapeless social organization, the shifts from station to station are fast and easy. More important for our immediate purpose, America is fundamentally an industrial society in a time of tremendous technological development. We are thus constantly presented with new devices or new forms of power that, in their refinement and extension, continually bombard the fixed structure of our habits of mind and behaviour. Under such conditions, our salvation, or at least our peace of mind, appears to depend upon how successfully we can in the future become what has been called in an excellent phrase a completely "adaptive society."

It is interesting, in view of all this, that so little investigation, relatively, has been made of the process of change and human responses to it. Recently psychologists, sociologists and cultural anthropologists have addressed themselves to the subject with suggestive results. But we are still far from a full understanding of the process, and still farther from knowing how we can set about simplifying and assisting an individual's or a group's accommodation to new machines or new ideas.

With these things in mind, I thought it might be interesting and perhaps useful to examine historically a changing situation within a society; to see if from this examination we can discover how the new machines or ideas that introduced the changing situation developed; to see who introduces them, who resists them, what points of friction or tension in the social structure are produced by the innovation, and perhaps why they are produced and what, if anything, may be done about it. For this case study, the introduction of continuous-aim firing in the United States Navy has been selected. The system, first devised by an English officer in 1898, was introduced into our Navy in the years 1900-1902.

I have chosen to study this episode for two reasons. First, a navy is not unlike a society that has been placed under laboratory conditions. Its dimensions are severely limited; it is beautifully ordered and articulated; it is relatively isolated from random influences. For these reasons the impact of change can be clearly discerned, the resulting dislocations in the structure easily discovered and marked out. In the second place, the development of continuous-aim firing rests upon mechanical devices. It, therefore, presents for study a concrete, durable situation. It is not like many other innovating reagents-a Manichean heresy, or Marxism, or the views of Sigmund Freud-that can be shoved and hauled out of shape by contending forces or conflicting prejudices. At all times we know exactly what continuous aim firing really is. It will be well now to describe, as briefly as possible. what it is.

The governing fact in gunfire at sea is that the gun is mounted on an unstable platform—a rolling ship. This constant motion obviously complicates the problem of holding a steady aim. Before 1898 this problem was solved in the following elementary fashion. A gun pointer estimated the range of the target—ordinarily about 2800 yards. He then raised the gun barrel to give

Continuous-aim firing on the Cruiser Birmingham, 1913

the gun the elevation to carry the shell to the target at. the estimated range. This was accomplished by turning a small wheel on the gun mount that operated the elevating gears. With the gun thus fixed for range, the gun pointer peered through open sights, not unlike those on a small rifle, and waited until the roll of the ship brought the sights on the target. He then pressed the firing button that discharged the gun. There were, by 1898, on some naval guns, telescope sights which naturally enlarged the image of the target for the gun pointer. But these sights were rarely used by gun pointers. They were lashed securely to the gun barrel and, recoiling with the barrel, jammed back against the unwary pointer's eye. Therefore, when used at all, they were used only to take an initial sight for purposes of estimating the range before the gun was fired.

Notice now two things about the process. First of all, the rapidity of fire was controlled by the rolling period of the ship. Pointers had to wait for the one moment in the roll when the sights were brought on the target. Notice also this: There is in every pointer what is called a "firing interval"-the time lag between his impulse to fire the gun and the translation of this impulse into the act of pressing the firing button. A pointer, because of this reaction time, could not wait to fire the gun until the exact moment when the roll of the ship brought the sights onto the target; he had to will to fire a little before, while the sights were off the target. Since the firing interval was an individual matter, varying obviously from man to man, each poiner had to estimate, from long practice, his own interval and compensate for it accordingly.

These things, together with others we need not here investigate, conspired to make gunfire at sea relatively uncertain and ineffective. The pointer, on a moving platform, estimating range and firing interval, shooting while his sight was off the target, became in a sense an individual artist.

In 1898, many of the uncertainties were removed from the process, and the position of the gun pointer radically altered, by the introduction of continuous-aim firing. The major change was that which enabled the gun pointer to keep his sight and gun barrel on the target throughout the roll of the ship. This was accomplished by altering the gear ratio in the elevating gear to permit a pointer to compensate for the roll of the vessel by rapidly elevating and depressing the gun. From this change another followed. With the possibility of maintaining the gun always on the target, the desirability of improved sights became immediately apparent. The advantages of the telescope sight, as opposed to the open sight, were for the first time fully realized. But the existing telescope sight, it will be recalled, moved with the recoil of the gun and jammed back against the eye of the gunner. To correct this, the sight was mounted on a sleeve that permitted the gun barrel to recoil through it without moving the telescope.

These two improvements—in elevating gear and sighting—eliminated the major uncertainties in gunfire at sea and greatly increased the possibilities of both accurate and rapid fire.

You must take my word for it that this changed naval gunnery from an art to a science, and that gunnery accuracy in the British and our Navy increased about 3000 per cent in six years. This doesn't mean much except to suggest a great increase in accuracy. The following comparative figures may mean a little more. In 1899 five ships of the North Atlantic Squadron fired five minutes each at a lightship hulk at the conventional range of 1600 yards. After twenty-five minutes of banging away two hits had been made on the sails of the elderly vessel. Six years later one naval gunner made 15 hits in one minute at a target 75 x 25 feet at the same range; half of them hit in a bull's eye 50 inches square.

Now with the instruments (the gun, elevating gear, and telescope), the method, and the results of continuous-aim firing in mind, let us turn to the subject of major interest: how was the idea, obviously so simple an idea, of continuous-aim firing developed; who introduced it; and what was its reception?

Introduction of an idea

The idea was the product of the fertile mind of the English officer, Admiral Sir Percy Scott. He arrived at it in this way, while, in 1898, he was the captain of H. M. S. Scylla. For the previous two or three years he had given much thought, independently and almost alone in the British Navy, to means of improving gunnery. One rough day, when the ship, at target practice, was pitching and rolling violently, he walked up and down the gun deck watching his gun crews. Because of the heavy weather they were making very bad scores. Scott noticed, however, that one pointer was appreciably more accurate than the rest. He watched this man with care and saw, after a time, that he was unconsciously working his elevating gear back and forth in a partially successful effort to compensate for the roll of the vessel. It flashed through Scott's mind at that moment that here was the sovereign remedy for the problems of inaccurate fire. What one man could do partially and unconsciously, perhaps all men could be trained to do consciously and completely.

Acting on this assumption, he did three things. First, in all the guns of the Scylla, he changed the gear ratio in the elevating gear, previously used only to set the gun in fixed position for range, so that a gunner could easily elevate and depress the gun to follow a target throughout the roll. Second, he rerigged his telescopes so that they would not be influenced by the recoil of the gun. Third, he rigged a small target at the mouth of the gun, which was moved up and down by a crank to simulate a moving target. By following this target as it moved, and firing at it with a subcalibre rifle rigged in the breech of the gun, the pointer could practice every day. Thus equipped, the ship became a training ground for gunners. Where before the good pointer was an individual artist, pointers now became trained technicians, fairly uniform in their capacity to shoot. The effect was immediately felt. Within a year the Scylla established records that were remarkable.

.....

At this point I should like to stop a minute to notice several things directly related to, and involved in, the process of innovation. First, the personality of the innovator. I wish there were space to say a good deal about Admiral Sir Percy Scott. He was a wonderful man. Three small hits of evidence must suffice, however. First, he had a certain mechanical ingenuity. Second, his personal life was shot through with frustration and bitterness. There was a divorce, and a quarrel with the ambitious Lord Charles Beresford—the sounds of which, Scott liked to recall, penetrated to the last outposts of empire. Finally, he possessed, like Swift, a savage indignation directed ordinarily at the inelastic intelligence of all constituted authority—especially the British Admiralty.

There are other points worth mention here. Notice first that Scott was not responsible for the invention of the basic instruments that made the reform in gunnery possible. This reform rested upon the gun itself, which as a rifle had been in existence on ships for at least forty years; the elevating gear, which had been, in the form Scott found it, a part of the rifled gun from the beginning; and the telescope sight, which had been on shipboard at least eight years. Scott's contribution was to bring these three elements, appropriately modified, into a combination that made continuous-aim firing possible for the first time. Notice also that he was allowed to bring these elements into combination by accident, by watching the unconscious action of a gun pointer endeavoring through the operation of his elevating gear to correct partially for the roll of his vessel.

The prepared mind is not enough

Scott, as we have seen, had been interested in gunnery; he had thought about ways to increase accuracy by practice and improvement of existing machinery; but able as he was, he had not been able to produce on his own initiative and by his own thinking the essential idea and modify instruments to fit his purpose. Notice here finally, the intricate interaction of chance, the intellectual climate, and Scott's mind. Fortune (in this case the unaware gun pointer) indeed favors the prepared mind, but even fortune and the prepared mind need a favorable environment before they can conspire to produce sudden change. No intelligence can proceed very far above the threshold of existing data or the binding combinations of existing data.

All these elements that enter into what may be called "original thinking" interest me as a teacher. Deeply rooted in the pedagogical mind often enough is a sterile infatuation with "inert ideas"; there is thus always present in the profession the tendency to be diverted from the process by which these ideas, or indeed any ideas, are really produced. I well remember with what contempt a class of mine, which was reading Leonardo da Vinci's Notebooks, dismissed the author because he appeared to know no more mechanics than, as one wit in the class observed, a Vermont Republican farmer of the present day. This is perhaps the result to be expected from a method of instruction that too frequently implies that the great generalizations were the result, on the one hand, of chance—an apple falling in an orchard or a teapot boiling on the hearth-or, on the other hand, of some towering intelligence proceeding in isolation inexorably toward some prefigured idea, like evolution, for example.

This process by which new concepts appear, the interaction of fortune, intellectual climate, and the prepared imaginative mind, is an interesting subject for examination offered by any case study of innovation. It was a

subject that momentarily engaged the attention of Horace Walpole, whose lissome intelligence glided over the surface of so many ideas. In reflecting upon the part played by chance in the development of new concepts, he recalled the story of the three princes of Serendip who set out to find some interesting object on a journey through their realm. They did not find the particular object of their search, but along the way they discovered many new things simply hecause they were looking for something. Walpole believed this intellectual method ought to be given a name-in honor of the founders-Serendipity; and Serendipity certainly exerts a considerable influence in what we call original thinking. There is an element of Serendipity, for example, in Scott's chance discovery of continuous-aim firing in that he was, and had been, looking for some means to improve his target practice and stumbled upon a solution, by observation, that had never entered his head.

Educating the Navy

It was in 1900 that Percy Scott went out to the China Station as commanding officer of H.M.S. Terrible. In that ship he continued his training methods and his spectacular successes in naval gunnery. On the China Station he met up with an American junior officer, William S. Sins. Sims had little of the mechanical ingenuity of Percy Scott, but the two were drawn together by temperamental similarities that are worth noticing here. Sims had the same intolerance for what is called spit-and-polish and the same contempt for bureaucratic inertia as his British brother officer. He had for some years been concerned, as had Scott, with what he took to be the inefficiency of his own Navy. Just before he met Scott, for example, he had shipped out to China in the brand new pride of the fleet, the hattleship Kentucky. After careful investigation and reflection he had informed his superiors in Washington she was not a battleship at all-"but a crime against the white race."

The spirit with which he pushed forward his efforts to reform the naval service can best be stated in his own words to a brother officer: "I am perfectly willing that those holding views different from mine should continue to live, but with every fibre of my being I loathe indirection and shiftiness, and where it occurs in high place, and is used to save face at the expense of the vital interests of our great service (in which silly people place such a childlike trust), I want that man's blood and I will have it no matter what it costs me personally."

From Scott in 1900 Sims learned all there was to know about continuous-aim firing. He modified, with the Englishman's active assistance, the gear on his own ship and tried out the new system. After a few months' training, his experimental batteries began making remarkable records at target practice. Sure of the usefulness of his gunnery methods, Sims then turned to the task of educating the Navy at large. In 13 great official reports he documented the case for continuous-aim firing, supporting his arguments at every turn with a mass of factual data. Over a period of two years, he reiterated three principal points: First, he continually cited the records established by Scott's ships, the Scylla and the Terrible and supported these with the accumulating data from his own tests on an American ship; second, he described the mechanisms used and the training procedures instituted by Scott and himself to obtain these records; third, he explained that our own mechanisms were not generally adequate without modification to meet the demands placed on them by continuous-aim firing. Our elevating gear, useful to raise or lower a gun slowly to fix it in position for the proper range, did not always work easily and rapidly enough to enable a gunner to follow a target with his gun throughout the roll of the ship. Sims also explained that such few telescope sights as there were on board our ships were useless. Their cross wires were so thick or coarse that they obscured the target, and the sights had been attached to the gun in such a way that the recoil system of the gun plunged the eyepiece against the eye of the gun pointer.

This was the substance not only of the first but of all the succeeding reports written on the subject of gunnery from the China Station. It will be interesting to see what response these met with in Washington. The response falls roughly into three easily indentifiable stages.

First stage: no response. Sims had directed his comments to the Bureau of Ordnance and the Bureau of Navigation; in both bureaus there was dead silence. The thing—claims and records of continuous-aim firing —was not credible. The reports were simply filed away and forgotten. Some indeed, it was later discovered to Sims' delight, were half eaten away by cockroaches.

Second stage: rebuttal. It is never pleasant for any man to have his best work left unnoticed by superiors, and it was an unpleasantness that Sims suffered extremely ill. In his later reports, beside the accumulating data he used to clinch his argument, he changed his tone. He used deliberately shocking language because, as he said, "They were furious at my first papers and stowed them away. I therefore made up my mind I would give these later papers such a form that they would he dangerous documents to leave neglected in the files." To another friend he added, "I want scalps or nothing and if I can't have 'em I won't play."

Sims gets attention

Besides altering his tone, he took another step to be sure his views would receive attention. He sent copies of his reports to other officers in the fleet. Aware, as a result, that Sims' gunnery claims were being circulated and talked about, the men in Washington were then stirred to action. They responded-notably through the Chief of the Bureau of Ordnance, who had general charge of the equipment used in gunnery practice-as follows: (1) Our equipment was in general as good as the British; (2) since our equipment was as good, the trouble must be with the men, but the gun pointer and the training of gun pointers were the responsibility of the officers on the ships; (3) and most significant continuous-aim firing was impossible. Experiments had revealed that five men at work on the elevating gear of a six-inch gun could not produce the power necessary to compensate for a roll of five degrees in ten seconds. These experiments and calculations demonstrated beyond peradventure or doubt that Scott's system of gunfire was not possible.

Only one difficulty is discoverable in these arguments; they were wrong at important points. To begin with, while there was little difference between the standard British equipment and the standard U. S. equipment, the instruments on Scott's two ships, the *Scylla* and the *Terrible*, were far better than the standard equipment on our ships. Second, all the men could not be trained in continuous-aim firing until equipment was improved throughout the fleet. Third, the experiments with the elevating gear had been ingeniously contrived at the Washington Navy Yard—on solid ground. It had, therefore, been possible in the Bureau of Ordnance calculation, to dispense with Newton's first law of motion, which naturally operated at sea to assist the gunner in

8-APRIL 1950

elevating or depressing a gun mounted on a moving ship. Another difficulty was of course that continuousaim firing was in use on Scott's and some of our own ships at the time the Chief of the Bureau of Ordnance was writing that it was a mathematical impossibility. In every way I find this second stage, the apparent resort to reason, the most entertaining and instructive in our investigation of the responses to innovation.

Third stage: name calling. Sims, of course, by the high temperature he was running and by his calculated overstatement, invited this. He was told in official endorsements on his reports that there were others quite as sincere and loyal as he and far less difficult; he was dismissed as a crack-brain egotist; he was called a deliberate falsifier of evidence.

Sims gets action

The rising opposition and the character of the opposition was not calculated to discourage further efforts by Sims. It convinced him that he was being attacked by shifty, dishonest men who were the victims, as he said, of insufferable conceit and ignorance. He made up his mind, therefore, that he was prepared to go to any extent to obtain the "scalps" and the "blood" he was after. Accordingly he, a lieutenant, took the extraordinary step of writing the President of the United States, Theodore Roosevelt, to inform him of the remarkable records of Scott's ships, of the inadequacy of our own gunnery routines and records, and of the refusal of the Navy Department to act. Roosevelt, who always liked to respond to such appeals when he conveniently could, brought Sims back from China late in 1902 and installed him as Inspector of Target Practice, a post the naval officer held throughout the remaining six years of the Administration.

With this sequence of events (the chronological account of the innovation of continuous-aim firing) in mind, it is possible now to examine the evidence to see what light it may throw on our present interest the origins of and responses to change in a society.

First, the origins. We have already analyzed briefly the origins of the idea. We have seen how Scott arrived at his notion. We must now ask ourselves, I think, why Sims so actively sought, almost alone among his brother officers, to introduce the idea into his service. It is particularly interesting here to notice again that neither Scott nor Sims invented the instruments on which the innovation rested. They did not urge their proposal because of pride in the instruments of their own design.

The Engineer and the Entrepreneur

The telescope sight had first been placed on shipboard in 1892 by Bradley Fiske, an officer of great inventive capacity. In that year Fiske had even sketched out on paper the vague possibility of continuous-aim firing, but his sight was condemned by his commanding officer, Robley D. Evans, as of no use. Instead of fighting for his telescope Fiske turned his attention to a range finder. But six years later Sims took over and became the engineer of the revolution.

I would suggest, with some reservations, this explanation: Fiske, as an inventor, took his pleasure in great part from the design of the device. He lacked, not so much the energy as the overriding sense of social necessity, that would have enabled him to *force* revolutionary ideas on the service. Sims possessed this sense. In Fiske we may here find the familiar plight of the engineer who often enough must watch the products of his ingenuity being organized and promoted by other men. These other promotional men, when they appear in the world of commerce, are called entrepreneurs. In the world of ideas they are still entrepreneurs.

Sims was one, a middle-aged man caught in the periphery (as a lieutenant) of the intricate webbing of a precisely organized society. Rank, the exact definition and limitation of a man's capacity at any given moment in his own career, prevented Sims from discharging all his exploding energies into the purely routine channels of the peacetime Navy. At the height of his powers he was a junior officer standing watches on a ship cruising aimlessly in friendly foreign waters. The remarkable changes in systems of gunfire to which Scott introduced him gave him the opportunity to expend his energies quite legitimately against the encrusted hierarchy of his society. He was moved, it seems to me, in part by his genuine desire to improve his own profession but also in part by rebellion against tedium, against inefficiency from on high, and against the artificial limitations placed on his actions by the social structure, in his case junior rank.

Responding to change

Now having briefly investigated the origins of the change, let us examine the reasons for what must be considered the weird response we have observed to this proposed change. Here was a reform that greatly and demonstrably increased the fighting effectiveness of a service that maintains itself almost exclusively to fight. Why then this refusal to accept so carefully documented a case; a case proved incontestably by records and experience? Why should virtually all the rulers of a society so resolutely seek to reject a change that so markedly improved its chances for survival in any contest with competing societies?

There are the obvious reasons that will occur to everyone—he source of the proposed reform was an ohscure junior officer 8000 miles away; he was, and this is a significant factor, criticizing gear and machinery designed by the very men in the bureaus to whom he was sending his criticisms. And furthermore, Sims was seeking to introduce what he claimed were improvements in a field where improvements appeared unnecessary. Superiority in war, as in other things, is a relative matter, and the Spanish-American War had been won by the old system of gunnery. Therefore, it-was superior even though of the 9500 shots fired, at varying but close ranges, only 121 had found their mark.

A less obvious cause appears by far the most important one. It has to do with the fact that the Navy is not only an armed force; it is a society. In the forty years following the Civil War, this society had been forced to accommodate itself to a series of technological changes—the steam turbine, the electric motor, the rifled shell of great explosive power, case-hardened steel armor, and all the rest of it. These changes wrought extraordinary changes in ship design, and, therefore, in the concepts of how ships were to be used; that is, in fleet tactics, and even in naval strategy. The Navy of this period is a paradise for the historian or sociologist in search of evidence of a society's responses to change.

To these numerous innovations, producing as they did a spreading disorder throughout a service with heavy commitments to formal organization, the Navy responded with grudging pain. It is wrong to assume, as civilians frequently do, that this blind reaction to technological change springs exclusively from some causeless Bourbon distemper that invades the military mind. There is a sounder and more attractive base. The opposition, where it occurs, of the soldier and the sailor to such

William S. Sims as a four-star Admiral-1919

change springs from the normal human instinct to protect oneself and more especially one's way of life. Military organizations are societies built around and upon the prevailing weapon systems. Intuitively and quite correctly the military man feels that a change in weapon portends a change in the arrangements of his society.

Think of it this way. Since the time that the memory of man runneth not to the contrary, the naval society has been built upon the surface vessel. Daily routines, habits of mind, social organization, physical accommodations, conventions, rituals, spiritual allegiances have been conditioned by the essential fact of the ship. What then happens to your society if the ship is displaced as the principal element by such a radically different weapon as the plane? The mores and structure of the society are immediately placed in jeopardy. They may, in fact, be wholly destroyed. It was the witty cliché of the 20's that those naval officers who persisted in defending the battleship against the apparently superior claims of the carrier did so because the battleship was a more comfortable home. What, from one point of view, is a better argument?

This sentiment would appear to account in large part for the opposition to Sims; it was the product of an instinctive protective feeling, even if the reasons for this feeling were not overt or recognzed. The years after 1902 proved how right, in their terms, the opposition was. From changes in gunnery flowed an extraordinary complex of changes: in shipboard routines, ship design, and fleet tactics. There was, too, a social change. In the days when gunnery was taken lightly, the gunnery officer was taken lightly. After 1903, he became one of the most significant and powerful members of a ship's company, and this shift of emphasis naturally was shortly reflected in promotion lists. Each

Sims, characteristically choleric, and Theodore Roosevelt

one of these changes provoked a dislocation in the naval society, and with man's troubled foresight and natural indisposition to break up classic forms, the men in Washington withstood the Sims onslaught as long as they could. It is very significant that they withstood it until an agent from outside—outside and above who was not clearly identified with the naval society, entered to force change.

This agent, the President of the United States, might reasonably and legitimately claim the credit for restoring our gunnery efficiency. But this restoration by *force majeure* was brought about at great cost to the service and men involved. Bitternesses, suspicions, wounds were caused that it was impossible to conceal or heal.

Now this entire episode may be summed up in five separate points:

(1) The essential idea for change occurred in part by chance, but in an environment that contained all the essential elements for change, and to a mind prepared to recognize the possibility of change.

(2) The basic elements—the gun, gear, and sight were put in the environment by other men; men interested in designing machinery to serve different purposes, or simply interested in the instruments themselves.

(3) These elements were brought into successful combination by minds not interested in the instruments for themselves, but in what they could do with them. These minds were, to be sure, interested in good gunnery, overtly and consciously. They may also, not so consciously, have been interested in the implied revolt that is present in the support of all change. Their temperaments and careers indeed support this view. From gunnery, Sims went on to attack ship designs, existing fleet tactics, and methods of promotion. He lived and died, as the service said, a stormy petrel, a man always

10-APRIL 1950

on the attack against higher authority, a rebellious spirit.

(4) He and his colleagues were opposed on this occasion by men who were apparently moved by three considerations: honest disbelief in the dramatic but substantiated claims of the new process; protection of the existing devices and instruments with which they identified themselves; and maintenance of the existing society with which they were identified.

(5) The deadlock between those who sought change and those who sought to retain things as they were was broken only by an appeal to superior force; a force removed from and unidentified with the mores, conventions, devices of the society. This seems to me a very important point. The naval society in 1900 broke down in its effort to accommodate itself to a new situation. The appeal to Roosevelt is documentation for Mahan's great generalization that no military service should or can undertake to reform itself. It must seek assistance from outside.

Now with these five summary points in mind, it may be possible to seek, as suggested at the outset, a few larger implications from this story. What, if anything, may it suggest about the general process by which any society attempts to meet changing conditions?

No society can reform itself?

There is, to begin with, a disturbing inference half concealed in Mahan's statement that no military organization can reform itself. Certainly civilians would agree with this. We all know now that war and the preparation of war is too important, as Clemenceau said, to be left to the generals. But military organizations are really societies—more rigidly structured, more highly integrated than most communities, but still societies. What then if we make this phrase to read, "No society can reform itself"? Is the process of adaptation to change, for example, too important to be left to human beings? This is a discouraging thought, and historically there is some cause to be discouraged.

This is a subject to which we may well address ourselves. Our society, especially, is built, as I have said, just as surely upon a changing technology as the Navy of the 90's was built upon changing weapon systems. How then can we find the means to accept with less pain to ourselves and less damage to our social organization the dislocations in our society that are produced by innovation? I cannot, of course, give any satisfying answer to these difficult questions. But in thinking about the case study before us, an idea occurred to me that at least might warrant further investigation by men farmore qualified than I.

A primary source of conflict and tension in our case study appears to lie in this great word I have used so often in the summary—the word, *identification*. It cannot have escaped notice that some men identified themselves with their creations—sights, gun, gear, and so forth—and thus obtained a presumed satisfaction from the thing itself, a satisfaction that prevented them from thinking too closely on either the use or the defects of the thing; that others identified themselves with a settled way of life they had inherited or accepted with minor modification and thus found their satisfaction in attempting to maintain that way of life unchanged; and that still others identified themselves as rebellious spirits, men of the insurgent cast of mind, and thus obtained a satisfaction from the act of revolt itself.

This purely personal identification with a concept, a convention, or an attitude would appear to be a powerful barrier in the way of easily acceptable change. Here is an interesting primitive example. In the years from

1864-1871 ten steel companies in the country began making steel by the new Bessemer process. All but one of them at the outset imported from Great Britain English workmen familiar with the process. One, the Cambria Company, did not. In the first few years those companies with British labor established an initial superiority. But by the end of the 70's, Cambria had obtained a commanding lead over all competitors.

The Bessemer process, like any new technique, had been constantly improved and refined in this period from 1864-1871. The British laborers of Cambria's competitors, secure in the performance of their own original techniques, resisted and resented all change. The Pennsylvania farm boys, untrammeled by the rituals and traditions of their craft, happily and rapidly adapted themselves to the constantly changing process. They ended by creating an unassailable competitive position for their company.

How then can we modify the dangerous effects of this word *identification?* And how much can we tamper with this identifying process? Our security, much of it, after all, comes from giving our allegiance to something greater than ourselves. These are difficult questions to which only the most tentative and provisional answers may here be proposed for consideration.

The danger of limited identifications

If one looks closely at this little case history, one discovers that the men involved were the victims of severely limited identifications. They were presumably all part of a society dedicated to the process of national defense, yet they persisted in aligning themselves with separate parts of that process—with the existing instru-ments of defense, with the existing customs of the society, or with the act of rebellion against the customs of the society. Of them all, the insurgents had the best of it. They could, and did, say that the process of defense was improved by a gun that shot straighter and faster, and since they wanted such guns, they were unique among their fellows-patriots who sought only the larger object of improved defense. But this beguiling statement-even when coupled with the recognition that these men were right, and extremely valuable and deserving of respect and admiration-cannot conceal the fact that they were interested too in scalps and blood. They were so interested, in fact, that they made their case a militant one and thus created an atmosphere in which self-respecting men could not capitulate without appearing either weak or wrong or both. So these limited identifications brought men into conflict with each other, and the conflict prevented them from arriving at a common acceptance of a change that presumably, as men interested in our total national defense, they would all find desirable.

It appears, therefore, if I am correct in my assessment, that we might spend some time and thought on the possibility of enlarging the sphere of our identifications from the part to the whole. For example, those Pennsylvania farm boys at the Cambria Steel Company were, apparently, much more interested in the manufacture of steel than in the preservation of any particular way of making steel. So I would suggest that in studying innovation we look further into this possibility: the possibility that any group that exists for any purpose the family, the factory, the educational institution might begin by defining for itself its grand object, and see to it that that grand object is communicated to every member of the group. Thus defined and communicated, it might serve as a unifying agent against the disruptive local allegiances of the inevitable smaller elements that compose any group. It may also serve as a means to increase the acceptability of any change that would assist in the more efficient achievement of the grand object.

There appears also a second possible way to combat the untoward influence of limited identifications. We are. I may repeat, a society based on technology in a time of prodigious technological advance, and a civilization committed irrevocably to the theory of evolution. These things mean that we believe in change; they suggest that if we are to survive in good health we must become an "adaptive society." By the word "adaptive" is meant the ability to extract the fullest possible returns from the opportunities at hand; the ability of Sir Percy Scott to select judiciously from the ideas and material presented both by the past and present and to throw them into a new combination. "Adaptive." as here used, also means the kind of resilience that will enable us to accept fully and easily the best promises of changing circumstances without losing our sense of continuity or our essential integriy.

We are not yet emotionally an adaptive society, though we try systematically to develop forces that tend to make us one. We encourage the search for new inventions; we keep the mind stimulated, hright, and free to seek out fresh means of transport, communication, and energy; yet we remain, in part, appalled by the consequences of our ingenuity and, too frequently, try to find security through the shoring up of ancient and irrelevant conventions, the extension of purely physical safeguards, or the delivery of decisions we ourselves should make into the keeping of superior authority like the state. These solutions are not necessarily unnatural or wrong, but historically they have not been enough, and I suspect they never will be enough to give us the serenity and competence we seek.

A new view of ourselves

If the preceding statements are correct, they suggest that we might give some attention to the construction of a new view of ourselves as a society which in time of great change identified itself with and obtained security and satisfaction from the wise and creative accommodation to change itself. Such a view rests. I think, upon a relatively greater reverence for the mere *process* of living in a society than we possess today, and a relatively smaller respect for and attachment to any special *product* of a society—a product either as finite as a bathroom fixture or as conceptual as a fixed and final definition of our Constitution or our democracy.

Historically such an identification with process as opposed to product, with adventurous selection and adaptation as opposed to simple retention and posessiveness, has been difficult to achieve collectively. The Roman of the early republic, the Italian of the late fifteenth and early sixteenth century, or the Englishman of Elizabeth's time appear to have been most successful in seizing the new opportunities while conserving as much of the heritage of the past as they found relevant and useful to their purpose.

We seem to have fallen on times similar to theirs, when many of the existing forms and schemes have lost meaning in the face of dramatically altering circumstances. Like them we may find at least part of our salvation in identifying ourselves with the adaptive process and thus share with them some of the joy, exhuberance, satisfaction, and security with which they went out to meet their changing times.