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Gambling with Statistics

by GARY A. LORDEN

_-l; mathematical theory of probability originated with
attempts to analyze games of chance involving cards and
dice. Even modern textbooks on probability devote sub-
stantial space to examples and calculations related to gam-
bling games. What is less well known is the extent to
which certain methods of statistical inference are also in-
timately related to the study of gambling.

One such area is my own research specialty, sequential
analysis, which is based upon the idea of sampling data
“‘one point at a time,”’ the total amount of sampling being
determined by carefully specified rules. These rules call
for larger samples when the data are inconclusive, and
smaller samples when early results are dramatic. Methods
of sequential analysis have been applied to a broad range
of practical problems, and have been particularly success-
ful in areas such as clinical trials, reliability testing, and
quality control, where the taking of data is necessarily
spread out over time or is very costly. A great many prob-
Iems of statistical inference can be solved by sequential
methods, usually with much greater efficiency than is
possible using classical techniques that take a sample of
fixed size.

Because of the one-at-a-time nature of sequential
sampling, the performance of these statistical procedures
depends on the same sort of *‘chance fluctuation’’ phe-
nomena that are of interest to gamblers. It is therefore not
surprising that many of the methods of probability theory
that have proved useful in the theory of sequential analysis
are also quite illuminating when applied to questions about
gambling such as: What are the chances of winning a lot
of money in a particular game? What makes some bets and
betting schemes successful more often than others?

Let’s analyze the following situation. Suppose you find
yourself in a gambling casino with $100 in your pocket
and feel a desperate need to win $2000. Which of the fol-
lowing bets would be the best way to start?

(A) Put $10 on ‘8 the hard way’’ at craps.

(B) Risk $40 on ‘‘red’’ at roulette.

(C) Wager $10 on the “‘pass line’’ at craps.

A typical Caltech student would check the odds and per-
centages:

A pays $90 profit, but the odds against it are 10 to 1,
and the percentage in favor of the house is 9.1 percent.

B pays $40 with odds of 10 to 9 against, and the house
percentage is 5.3 percent.

C pays $10 with unfavorable odds of 36 to 35 (approx-
imately), and the house percentage is 1.4 percent.

To make the choice more definite, let’s assume that,
whichever you choose, you will continue with the same
proposition and will always bet the same fraction of your
money, no matter how much you have, until you win your
bundle (if ever). For example, if you choose A and get up
to $500, you will wager $50 on the next turn.

Are you ready for the answer? It appears at the end of
the next paragraph, so to avoid prejudicial information you
should make your decision now.

The most popular choice is the third, based on the low
house percentage. Some prefer the second, because it in-
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Figure 1. Probability of 20-fold win on the pass line.
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Figure 2. Probability of 20-fold win with various payoff ratios. All
calculations assume 1) the fraction of money risked is 10 percent,
and 2) the house advantage is 2 percent; that s, if R is the payoff ratio,
then .98/(1+R) is the probability of winning on each bet.

volves betting a larger fraction of your capital (which
Lielps). Only an occasional optimist or devil’s advocate
picks the first, but that is actually the best bet of the three
(and the third is the worst).

Tn fact, all three bets give the player roughly the same
chance of success — small. Your probability of winning is
2.32 percent with A, 2.31 percent with B, and 2.14 per-
cent with C. In a perfectly fair game (with no advantage
for the casino) your chances of turning $100 into $2000
would be 1 in 20, or 5 percent. Why are the probabilities
of A, B, and C so much lower? And how can it be that A
is the best?

Figures 1 and 2 provide some insight into the answer. It
is true that lower house percentages, like the one in C,
help the player’s chances. But there are two other impor-
tant factors. One is the fraction of your money that you
risk on each bet. The other is the payoff ratio — the num-
ber of dollars profit for each dollar bet when the bet wins.
Figure 1 shows how dramatically the chances of a big win
are reduced by risking small fractions of your money. Op-
tion B beats option C by virtue of risking 40 percent rather
than 10 percent. Figure 2 illustrates the improvement in
the player’s chances resulting from a high payoff ratio. Bet
A risks the same fraction as bet C and faces a much
tougher house percentage, but its 9-to-1 payoff ratio more
than compensates for this disadvantage.

Gambles like these can be analyzed easily by the
methods of modern probability theory. One of these
methods uses the notion of a martingale, the mathematical
model of a fair game, which is used extensively in sequen-
tial analysis. Fair games have very nice mathematical
properties. As mentioned before, the chances of turning
$100 into $2000 are 1 in 20, and any other ratio works the

same way. For example, the chances of turning $56.30
into $347.50 are 563 out of 3475.

A gambler using system A is playing an unfair game, of
course, so his chances of winning can’t be calculated that
easily. But there is a trick we can use — a way of ‘‘keep-
ing score’’ so that the game becomes fair. For example, in
system A, if the player has $100, his score is (100)!-2%,
the number 100 raised to the power 1.256 (which is easy
to compute on a scientific calculator). If he gets to $2000,
his score is (2000)'-2%%, and so on. Why 1.256? Because
this is the power (which I like to call the ‘‘casino power’")
that makes the scores behave like a fair game. Starting
with (100)!256=1325.1, the chances of making it to
(2000)!-2%6=13,998.9 are 3251 out of 139,989, which is
the 2.32 percent mentioned earlier.

How is the casino power of 1.256 for bet A calculated?
The player starting with $100 has one chance in 11 to win
his $10 bet and jump up to $190, and 10 chances in 11 to
lose and drop down to $90. If the power p is used for
“‘scoring,’’ then the player has a score of 100P initially
and after the first bet has either 190° or 90P. Taking
account of the respective probabilities, his score after the
first bet is, on the average,

1 x190° + 10 x 90°.

11 11
If this equals 100 — his score before betting — then
the game is fair. And this requires p = 1.256. Similar
reasoning applied to hets B and C yields p = 1.257 and
p = 1.283, respectively. Note that the smaller the casino
power p, the better are your chances of winning, which are
100° out of 2000P, or (.05)P. If p = 1, then the original
bet is fair. Unfavorable bets will always have a casino
power p bigger than 1. (The only exception is a bet with
literally no chance to win, for which the casino power is
undefined and, no doubt, of limited practical interest.)
One of the nicest features of the notion of casino power is
the fairly obvious principle that the chances of winning in
a sequence of different types of bets are no greater than
they would be if all of the bets had the same casino power
as the best bet in the sequence. This simple principle
makes it easy to refute a lot of the intricate betting
schemes (particularly for craps) that are studied at length
in the pseudo-scientific gambling literature.

The best casino power I know of for an unfavorable
game is p = 1.0081 for craps in casinos that offer “‘dou-
ble odds”’ side bets. This is obtainable by betting one-third
of your current capital on the pass line and the remaining
two-thirds behind the line. (For explanations of these
terms, consult your local croupier.) Since casino chips
don’t come in fractions, you can only approximate this
scheme in actual play, but casino powers of about 1.009
can be achieved in this way by players who are willing to
risk everything at once. (Of course, the game of blackjack
is favorable under proper conditions, and more limited bet
sizes are advantageous in favorable games, where
casino power is an irrelevant notion. )



What does all this have to do with statistics? Surprising-
ly enough, thc samc kind of calculations arc nceded to de-
termine the chances of error in a statistical test. What’s
more, the most efficient methods for testing statistical
hypotheses, those of sequential analysis. involve some of
the same mathematical problems that a gambler is con-
cerned with.

To understand these problems, consider the following
hypothetical problem in statistics. You have a very large
box containing millions of marbles, some of them white,
the rest red. You want to pick at random a sample of a
small number of marbles and infer which color the major-
ity of marbles are. The classical methods of statistics lead
to procedures like this: Determine in advance a sample
size, take a samplé of that size, and see which color most
of the marbles in the sample are.

The chances of error in a test like this depend on the
size of the sample and on the actual fraction of red mar-
bles in the box. If 45 percent of the marbles are red, and
we sample 121 (a convenient size for later comparison),
then the probability of getting 61 or more red marbles in
the sample is 13.5 percent, and this is the probability of
error; if 48 percent of the marbles are red, the probability
of error is much larger, namely, 33 percent. We can re-
duce the chances of error by taking a larger sample size.
For example, sampling 241 marbles will yield error prob-
abilities of 5.9 percent for 45 percent red and 26.7 percent
for 48 percent red.

The main goal of statistical theory is to find methods of
sampling and drawing inferences that are the most efficient
— that is, have the smallest possible error probabilities for
a particular sample size. Said another way, if we want spe-
cified error probabilities, then the most efficient tests are
those that require the smallest possible sample size.

Going back to our problem with the marbles, it’s hard to
see how one could possibly improve upon the efficiency of
the test that draws a sample and picks the color of the
majority of that sample. In fact, there is a famous theorem
in statistics that guarantees that no test taking a sample of
121 marbles can possibly improve upon the error probabili-
ties of that test. Nevertheless, there are more efficient tests.
These tests do not fix the sample size in advance, but in-
stead sample marbles one at a time sequentially, following
a previously specified rule for stopping the test and decid-
ing which color predominates.

This approach to statistical inference, called sequential
analysis, was developed in the mid-1940s by a mathema-
tical statistician named Abraham Wald, whose book on the
subject opened up new fields of research and applications.
Wald’s principal method, called the Sequential Probability
Ratio Test (SPRT), gives recipes like the following for the
marble problem: Sample one at a time until you have 11
more marbles of one color than the other. This could hap-
pen after 11 marbles, if all are the same color, or, perhaps,
after 41 marbles are sampled, 26 white and 15 red. When-
ever this situation occurs, the SPRT stops and decides

the color that’s ahead is in the majority in the box of
marblcs. '

This process can be considered as a game in which a
gambler bets even money that the next color drawn will
be red. Think of the gambler starting with 11 chips and
betting one at a time until he loses all 11 chips or wins 11
more chips. That corresponds exactly to the rule for car-
rying out an SPRT, but it is also an example of the famous
“‘gambler’s ruin problem.”’ In fact, if the ratio of red to
white marbles in the box is 9 to 10, this is just like betting
on red in Las Vegas roulette.

What are the probabilitics of crror for thc SPRT? They
depend on the true percentages of the two colors in the
box, just as they do for fixed sample size tests. If there are
45 percent red marbles, say, then an error is made if the
gambler gets 11 ahead without previously getting 11 be-
hind in a game where he has a 45 percent chance to win on
each bet. To solve this ‘‘gambler’s ruin problem,”’ we can
use the same idea of inventing a scoring system to make a
fair game. Start off with a score of 1 and multiply the
score by 55/45 every time he wins, and by 45/55 every
time he loses. Since the chances of these are 45 out of 100
and 55 out of 100, respectively, on the average each bet
multiplies his score by

4555, 55,45 55, 45_

100~ 45 100~ 55 100 100
So on the average this score goes neither up nor down, and
the game is [air. If he wins the 11 chips, his score at that
time will be (55/45)!!, whereas if he loses, it will be
(45/55)!!. If p and 1 —p are his probabilities of winning
and losing, then his average score when the game stops is

p (55/45)" + (1—p) (45/55)!1,

Since the scoring system makes the game fair, this average
score at the end must equal his score at the beginning,
which was 1. That fact gives a simple equation to solve for
p. and the answer is p = .099. Thus the probability of
error is 9.9 percent for the SPRT when there are 45 per-
cent red marbles in the box. For 48 percent red marbles,
the same calculations with 45 and 55 replaced by 48 and
52 show that the error probability i1s 2Y.3 percent.

Why should a statistician want to use a test like the
SPRT that imitates a gambling game? Because it is more
efficient than fixed sample size tests. It turns out that the
average number of marbles sampled by the SPRT depends
on the proportions of red and white marbles in the box, but
the worst case is the one where the two colors are equally
numerous. In this case the sample size of the SPRT is 121,
on the average — exactly the same as the fixed sample
size test discussed earlier. So it makes sense to compare
their error probabilities.

In the table below, which compares the error probabili-
ties and average sample sizes of the SPRT with those of
the fixed sample size test discussed earlicr, notice that the
SPRT yields improvements both in error probabilities and
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in average sample sizes. Of course, one can make other
comparisons. For example, suppose we specify that the
probability of error should be no more than 9.9 percent if
45 percent of the marbles in the box are of one color and
55 percent are of the other color. Then the smallest fixed
sample size that accomplishes this is 164 — almost twice
as large as the average sample size of the SPRT for these
percentages of the two colors. In fact, Wald and Tacob
Wolfowitz proved over 30 years ago that the SPRT is the
most efficient possible test in a certain sense. For exam-
ple, every other test needs a larger average sample size
than 88.2 to obtain 9.9 percent error probabilities in the
case of 45 percent or 55 percent red marbles.

Probability
of Test Error Average Sample Size
Fraction
of red Fixed Fixed
marbles sample sample
in box SPRT size SPRT size
45% 9.9% 13.5% 88.2 121
48% 29.3% 33.0% 113.8 121
50% — — 121 121
52% 29.3% 33.0% 113.8 121
55% 9.9% 13.5% 88.2 121

Other efficiency criteria are important, however, and it
turns out that the average sample size of 121 in the worst
case can, in fact, be made smaller by choosing a different
sequential test having the same 9.9 percent error probabili-
ties. Finding tests that have the smallest possible average
sample size in the worst case has been recognized as an
important problem in statistical theory since it was first
studied over 20 years ago by Jack Kiefer and Lionel
Weiss. Among the difficulties associated with the problem
is the fact that, except for situations like our marble prob-
lem that have a symmetrical character, it is not possible to
identify the worst case in advance. It depends on the se-
quential test that is used. What we really want is the test
whose worst performance is better than the worst perfor-
mance of all other tests with the same error probabilities.

The problem of finding such tests, called ‘‘Kiefer-Weiss
solutions,”’ remains unsolved. However, work done in the
last few years at Caltech has produced practical methods
for constructing sequential tests that come close to solving
it, and are, therefure, nearly as cfficient as possible in this
sense. The kind of sequential test that accomplishes this
can be described most easily by a picture. Suppose that
after we sample each marhle, we plot a point on a graph of
S versus N (above, right), where N is the number of mar-
bles we’ve sampled so far, and S is the number of red
marbles so far, minus the number of white marbles. Then
an SPRT can be pictured by drawing a pair of parallel
lines (dotted lines in the picture) that correspond to par-
ticular values of S, like + 11 and — 11. Whenever one of
the plotted points reaches one of the dotted lines, the
SPRT stops sampling. The solid lines in the picture, on the
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other hand, represent anather sequential test, which stops
sampling when one of the plotted points reaches or crosses
over one of these lines.

My own research on the Kiefer-Weiss problem identi-
fied a class of sequential tests that look like the solid-line
picture, which I called 2-SPRTs because they are con-
structed from pieces of two different SPRTs in a certain
way. It turned out that one could prove that these seyuen-
tial tests are very nearly the best possible in a sense closely
related to the Kiefer-Weiss problem. My student, Michael
Huffman, recently showed in his PhD thesis how to
choose from the class of all 2-SPRTs those tests that will
come the closest to solving the Kiefer-Weiss problem.
Though all of this theory is what statisticians call *‘asymp-
totic’” (that is, based on what would happen if the sample
sizes were very large), it is possible to make very detailed
calculations on a computer that show in particular situa-
tions just how close these methods come to solving the
Kiefer-Weiss problem. In typical applications, the answer
seems to be that one achieves about 97 or 98 percent of the
best possible efficiency.

Current research in sequential analysis is expanding the
scope of both theory and applications. Recent work has led
to the development of useful sequential procedures in
many classical areas of statistics, such as the analysis of
variance, nonparametric statistics, and the design of ex-
periments. A growing stockpile of techniques has taken
the theury of sequential analysis far beyoud the study of
the Sequential Probability Ratio Test and its refinements.
Some of the problems now being solved by sequential
analysis methods, such as reactions to trends and changes
in distribution, and assignment of confidence intervals
with fixed precision regardless of the variance of the data,
cannot be dealt with at all by fixed sample size techniques.
Along with all of this usefulness and respectability comes
the continuing realization that sequential analysis, perhaps
more than any other branch of statistics, is firmly rooted in
the phenomena that govern one of mankind’s most cher-
ished disreputable pastimes: gambling. []



