
The Theory of Schrodinger Operators: 

What's It All About? 

by Barry Simon 

CALTECH HAS BECOME a world center of the 
study of SchrOdinger operators. What is 

the theory of Schrodinger operators anyway? 
In short, it is the rigorous mathematical study 
of the Hamiltonian operators of nonrelativis
tic quantum mechanics. 

Schrooinger operators are a part of 
mathematical physics, an area that suffers the 
usual fate of interdisciplinary areas: Too 
often the mathematicians think it's physics, 
and the physicists think it's mathematics. 
(Chemical physics has the same problem. 
Many years ago so did biochemistry, but in a 
sense it succeeded in absorbing a large part of 
biology.) Perhaps the reader will appreciate 
that SchrOdinger operators have useful 
insights to offer to both mathematics and 
physics. 

In quantum theory, a fundamental role is 
played by the energy written as a function of 
the momentum and position of the constit
uent particles, but with the twist characteristic 
of quantum mechanics (due to the Heisen
berg relations [p,x 1=-ifl that the momen
tum, Pj, is replaced by the elementary 
differential operator -ih a/8x) (where h is 
the rationalized Planck's constant, h !21t; hav
ing been careful to put h here, for typo
graphic simplicity I henceforth will use units 
with h = 1 and with electron mass equal to 
112). Thus, for a classical system of N elec
trons with momenta Pi U=1, ... ,m-3N for the 
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N 3-vector momenta) and classical energy 
m 
L pJ + V(x), 
}-I 

the Hamiltonian operator becomes H--il+V 
where the Laplacian il equals 

m 
L cPl8x}. 
}-I 

The Hamiltonian plays a crucial role in the 
dynamics of quantum systems since wave 
functions satisfy the partial differential equa
tion UJIjI/8t = HV called the time-dependent 
SchrOdinger equation. 

In physics textbooks, H is called the Ham
iltonian since it is the quantum analog of the 
object introduced in classical mechanics by 
William Hamilton. The same name is also 
used for the quantum energy operator of rela
tivistic quantum field theory. To emphasize 
that one is looking only at the non relativistic 
case, the Hamiltonians of nonrelativistic 
quantum mechanics are called Schrodinger 
operators. This honors Erwin Schrodinger, 
one of the founding fathers of quantum 
mechanics. Thus the theory of Schrodinger 
operators is simply the study of the 
differential operators -LH V. 

At first sight, one would not think that 
such an innocent-looking object could have a 
very interesting structure. Of course, one 
might conclude the same thing about the clas-



• 

sical analog, mx - -\lV, which is rich 
enough to describe phenomena as varied as 
the dynamics of binary stars or of water in a 
waterfall. [n the same way, SchrOdinger 
operators describe the full richness of quan
tum dynamics. Although there are results 
involving general V (perhaps there has been 
too much work on the general and not 
enough on the specific classes), much of the 
recent thrust has focused on the Vs relevant 
for atomic and molecular physics, the descrip
tion of perfect solids, and more exotic objects 
such as amorphous materials and quasicrys
ta[s. Here [ will describe several results, all 
related to atomic physics, which [ hope will 
give a flavor of the scope and significance of 
the field. 

The first question that a mathematician 
might ask concerns the existence of solutions 
of the time-dependent Schrodinger equation 
i~, - H,. For some reasonable class of Vs, 
including that describing N electrons moving 
in the Coulomb field of M protons (taken 
infinitely massive) in fixed positions 
Rl , ... ,i4t 
(equation I) 

L IXi-Rf + L IXi-xf 
l~i"'N l :!%i<J"' N 

+ L IRj-RjI 
I <.j <.M 

(now the xs are three-vectors), one would like 
to know that the time-dependent Schrodinger 
equation has a unique solution, if not for all 
initial conditions, at least for a very large set 
of initial conditions. 

Formally, the solution is given by 

'II, - exp( -itH)'IIo, 

but what does exp( - ilH) mean? Expanding 
the exponential and considering terms like 
6 2 V'IIo, where the derivatives of V produce 
non-square integrable singularities, will show 
the problem with a naive approach . On a 
slightly more sophisticated level, students of 
quantum mechanics learn that they cannot 
study the quantum motion of a particle in a 
box without specifying boundary conditions. 
How does one know that boundary condi
tions are not needed at infinity or at the 
Coulomb singularities in solving the 
Schrodinger equation with potential (I)? 

There is one attitude about these ques
tions that needs to be addressed - that is, 
that you don't need existence proofs for a 
physical theory because nature is an existence 
proof. This idea of nature as a grand analog 

l~ i <j :s:.M 

computer misses the whole point of existence 
proofs: We are not testing nature but rather 
our theories, which could, after all, be wrong 
or incomplete. A paradigm of this 
phenomenon concerns the changing attitude 
about quantum electrodynamics (QED). 
After the formulations of the theory by Feyn
man and Schwinger in the I 940s, a common 
attitude was that the impressive agreement 
with experiment proved that the theory had 
to be consistent. The current opinion among 
elementary particle theorists is quite different: 
As an abelian gauge theory, QED is most 
likely mathematically inconsistent. Rather, 
high energy physicists hope that the non
abelian gauge theory associated to the unified 
treatment of electromagnetic and weak 
interactions is consistent. The agreement 
with experiment is because the formal pertur
bation expansion of the putatively incon
sistent theory is quite close to that of the 
putatively consistent theory. 

[n response to the development of the new 
quantum mechanics (I 925-28), John von 
Neumann developed a theory of unbounded 
operators in Hilbert space precisely to deal 
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with foundational questions in quantum 
mechanics. What von Neumann realized is 
that the key to solving the time-dependent 
SchrOdinger equation was the proof that H 
has a abstruse mathematical property called 
essential selfadjointness. 

But here progress on this particular prob
lem stalled for 25 years, in part because von 
Neumann was convinced that the problem of 
proving essential selfadjointness of -d + V 
for V of the form (1) was an impossibly hard 
problem. And he was not shy about inform
ing others of his opinion. Indeed, I am told 
that as late as 1950, he insisted that the prob
lem was not trivial even for the hydrogen 
atom. (Of course, physicists do know how to 
write down all the eigenfunctions, including 
continuum eigenfunctions, in this case; in 
fact, by using the rotational symmetry of the 
hydrogen atom, one can reduce this case to 
some ordinary differential equations where 
selfadjointness was completely analyzed by 
Hermann Weyl in 1912. Using his methods 
it is not hard to prove essential selfadjointness 
for the hydrogen atom Hamiltonian.) This is 
ironic, because the two main inputs that tum 
out to be essential for the proof of this funda
mental property are an abstract result in 
operator perturbation theory proven by Franz 
Rellich in Germany in the mid-1930s and 
certain inequalities now known as Sobolev 
inequalities, developed in the 1930s by Sergei 
Sobolev in the Soviet Union and Salomon 
Bochner in the United States, among others. 
These tools were available by 1936 or so. But 
nobody put them together, perhaps because 
of von Neumann's well-known attitude that 
the problem was too hard to work on. 

The essential selfadjointness of atomic 
Hamiltonians was established by Tosio Kato 
(since the late 1950s professor of mathematics 
at UC Berkeley). Here is his description of 
the history of his work, taken from his accep
tance speech for the Wiener Prize (which 
appeared in the November 1980 issue of the 
Notices of the American Mathematical 
Society): 

"During World War II, I was working, in 
the countryside of Japan, on the spectral 
theory of Schrodinger operators and perturba
tion theory. As a physics student I had been 
led to study these problems on my own, since 
no one seemed to pay attention to them in 
spite of the existence of the general principle 
given by von Neumann. My first efforts were 
directed toward establishing the essential self
adjointness of SchrOdinger operators and lay-
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ing a mathematical foundation for perturba
tion theory. (At that time I did not know of 
Rellich's work.) 

"These works were more or less completed 
by the end of the war, but I was not very 
lucky with their publication. A couple of 
years later I submitted two papers on the sub
ject to Physical Review. They were soon for
warded to the Transactions of the American 
Mathematical Society, where the manuscripts 
were passed from one referee to another 
without success, eventually to be lost. I had 
to resubmit new manuscripts. After three 
years from initial submission, the papers were 
finally saved by the last referee." 

Interestingly, the analog of Kato's theorem 
for classical mechanics is open. That is, one 
can ask about global (in time) solutions of 
Newton's equations for point masses interact
ing gravitationally (or electrostatically). Even 
in the two-body case, global solutions will not 
exist for all initial conditions, since collisions 
are possible in finite time. But in the two
body case, only initial conditions with zero 
angular momentum can have collisions, so 
for almost all initial conditions, the classical 
two-body problem has global solutions. The 
analog of this was proven for the three-body 
problem by George Birkhoff (using results of 
Painleve and Sundman) in 1927, and for the 
four-body problem by Donald Saari 
(Northwestern) in 1977. It is open for 
N~5 where there are indications of a new 
phenomenon: initial conditions where parti
cles travel infinitely far in finite time (the 
infinitely large velocities are possible because 
of pairs spiraling into each other). It is not 
clear whether these only occur for a set of ini
tial conditions of measure zero. The quan
tum result can be viewed as an indication 
that for general N, the classical problem does 
have solutions for most initial conditions. 
The reason that quantum mechanics is nicer 
than classical mechanics is the uncertainty 
principle, in this case expressed through the 
Sobolev inequalities. 

Kato's work can be viewed as the birth of 
the modem theory of Schrodinger operators. 
Once we know this fundamental result, we 
can begin to ask many detailed questions. 
Some of the most subtle involve an area f call 
"quantum potential theory," which is the 
rigorous study of exact Coulomb binding 
energies in quantum mechanics. 

A basic result in quantum potential theory 
is "the stability of matter." This involves a 
problem first raised by Lars Onsager (known 
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for his worko,nthe Ising model, and on non
equilibrium thermooynamics, for which he 
received the Nobel Prize in chemistry) in the 
1930s. It is a basic fact of astrophysics that 
bulk matter in the absence of nuclear effects 
undergoes gravitational collapse. Onsager 
asked how we know that bulk matter doesn't 
undergo "electrostatic collapse." We know 
that quantum mechanics yields stability of a 
system of one electron and one proton. In 
classical mechanics the electron would fall 
into the proton, but in quantum theory this 
doesn't happen. This implies that a system of 
1026 protons and 1026 electrons won't collapse 
to zero size, but it certainly isn't obvious a 
priori that such an array won't collapse to a 
very small size indeed. Of course, since indi
vidual electrostatic forces are much stronger 
than gravitational, if there were electrostatic 
collapse, it would require much less matter 
than gravitational collapse, so we would 
observe it. Since we don't, it must not occur, 
but this doesn't explain why it doesn't occur 
and whether the fact that it doesn't occur is 
just due to quantum mechanics and 
electrostatics. 

The realization came quite early that lack 
of collapse is implied by the binding energy of 
a large system of particles being an extensive 
quantity, that is, that a system with potential 
(1) has a total energy bounded from below by 
- c(N+M) for some constant, c. Freeman 
Dyson (Institute for Advanced Study) and 
Andrew Lenard (Indiana University) first 
proved that this is the case in 1967. There is 
one especially striking aspect of their work: It 
is critical for their proof that electrons are fer
mions, that is, that they obey the Pauli exclu
sion principle. And we know now that this is 
essential; if both electrons and protons were 
bosons, electrostatic collapse would take 
place. While the precise rate of collapse is 
not known, it is likely that in the neutral 
(N=M) case, volume shrinks as the inverse 
fifth root of N. A system of 1026 "Bose" elec
trons and protons would live in a volume a 
very small fraction of a single hydrogen atom. 

The relevance of the Pauli principle, even 
for qualitative features, is ubiquitous in quan
tum potential theory. For example, last year 
Elliott Lieb (Princeton), Israel M. Sigal (UC 
Irvine), Walter Thirring (University of 
Vienna), and I showed that the number of 
electrons, N(Z), that one can bind to a charge 
Z nucleus grows as Z in the sense that 
N(Z)jZ goes to 1. But if electrons were 
bosons, Lieb and Raphael Benguria (Univer-

sity of Chile) showed that the analog Nb(Z) 
grows at least as fast as 1· 21 Z. The observed 
fact of nature that there seem to be no nega
tive ions with net charge larger than 1 is criti
cally dependent on the Pauli principle. 

As realized by Lieb and Joel Lebowitz 
(Rutgers), an important consequence of the 
Dyson-Lenard theorem combined with a 
study of shielding is the existence of thermo
dynamics for bulk matter, that is, of the 
extensive nature of basic quantities such as 
pressure in the quantum statistical mechanics 
of Coulomb systems. 

The Dyson-Lenard result is not the end of 
the story, because the constant c in their 
bound on the energy is roughly 1014 Rydbergs 
(a Rydberg is the binding energy of hydro
gen). Thus, while matter cannot shrink 
indefinitely, it could shrink so that interparti
cle distances were roughly 10-14 Bohr radii 
and still not violate the theorem of Dyson
Lenard. The large number 1014 in their proof 
occurs in part because of complexity. Sacri
ficing some truth to humor, one could say 
that their proof has 14 steps, each of which 
introduces a factor of 10 error. Dramatic 
progress was made by Lieb and Thirring in 
1975, who (counting some later refinements 
of their ideas) obtain a constant of roughly 20 
Rydbergs. 

The physics behind the Lieb-Thirring 
proof is quite illuminating; it is perhaps worth 
describing a part of it. There is an old, 
quasiclassical approximation to quantum 
mechanics called the Thomas-Fermi (TF) 
approximation. In 1973 Lieb and I rigor
ously proved that this approximation is exact 
in the large Z limit in the sense that it prop
erly describes the total binding energy and the 
electron density of the core. It does not 
correctly describe electrons near the outer 
shell, nor the ionization energies relevant to 
chemistry. Quantum chemists in the 1950s 
tried to compute numerically molecular bind
ing energies using the TF approximation and 
were unable to find any binding. In response 
to this, Edward Teller proved in 1960 that 
molecules never bind in TF theory. (Lieb 
and I later supplied some points of 
mathematical rigor, especially the existence of 
solutions of the TF equation, but Teller's 
argument is quite close to the rigorous one.) 
Thus, stability of matter is easy in TF theory: 
By Teller's result, the energy of an array of 
protons and electrons is always bounded from 
below by the total binding energy of well
isolated protons and an appropriate number 
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of electrons. Since it can be shown that in 
TF theory a proton binds only one negative 
charge, in TF theory the binding energy of N 
protons and M electrons is bounded by eN, 
where e is the binding energy of hydrogen in 
the TF approximation. 

Lieb and Thirring prove this by using 
their extension of the Sobolev inequalities 
(the Pauli principle enters in this step) and an 
additional trick that the total quantum energy 
of a system of N protons and M electrons 
is bounded below by -dM+TF', where d is a 
constant related to e and TF' is the TF 
energy, but in a theory with the wrong value 
of h. Thus the bound 

TF' > -e'N 

implies stability of matter. 
In a real sense, their proof has the right 

physics behind it. Stability is a statement of 
lack of collapse. This collapse is prevented by 
the interaction of "atomic cores," and Teller's 
theorem is precisely an assertion that cores 
(which, in the large Z limit, are described by 
TF theory) repel. Of course, Z = 1 is not 
large Z, so that it isn't clear that TF theory 
will apply here; Lieb and Thirring's discovery 
is that, if one is willing to make a small 
sacrifice in constants, it does apply. 

The last example I will discuss is slightly 
more technical in detail. Among other 
things, it illustrates that in mining for pyrite, 
you can occasionally discover gold. Simple
minded, two-body scattering theory breaks 
down precisely at Coulomb potentials. There 
is a logarithmic infinity that must be handled. 
From a time-dependent point of view, this 
was done in 1964 by John Dollard (Univer
sity of Texas). But, typically, mathematicians 
are not satisfied with treating only the physi
cally relevant case, but want to understand 
where the modified scattering theory breaks 
down, so literature has developed on scatter
ing for potentials decaying more slowly than 
Coulomb. I must confess that, while I recog
nize the validity of this area, I have not found 
it especially attractive or interesting. When I 
was starting out in the early 1970s, two other 
bright, young mathematical physicists, Rick 
Lavine (University of Rochester) and Jean 
Michel Combes (University of Toulon), 
separately proposed studying long-range 
scattering using a mathematical discipline 
called C*-algebras. Not only was the problem 
of limited interest, but I was convinced that 
this was the wrong approach to the problem. 
So, being a brash young man at the time, I 
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didn't hesitate to tell both Lavine. and 
Combes that they were wasting their time. In 
a sense my opinion was correct: The C*
algebra approach to the problem has not got
ten very far, and there are now much better 
ways of analyzing the problem. But for
tunately Lavine and Combes didn't listen to 
me, because each of them ran into technical 
problems that forced them to develop striking 
new methods. Lavine's ideas were a major 
element in a key breakthrough by Eric 
Mourre (CNRS Marseilles) in 1979. Interest
ingly enough, while the methods of Lavine 
and Combes seem to be unrelated, recent 
work by Peter Perry, the Bantrell Research 
Fellow in Mathematical Physics here at Cal
tech (with Arne Jensen at the University of 
Kentucky and Mourre) has shown an inti
mate relation between Mourre's descendent 
of Lavine's ideas and the Combes idea. 

Combes's ideas originally appeared as an 
appendix to a paper on the C*-approach to 
long-range scattering. After some reflection, 
Combes decided to perform an appendec
tomy and throw the patient away - his 
paper never appeared, but he pursued the 
appendix. In 1971 Combes published two 
papers developing this approach: one with 
Jean Aguilar (CNRS Marseilles) on the two
body case, and one with Eric Balslev (Univer
sity of Arhus) on the more subtle multiple
particle case. The main result of this analysis 
was a proof of the non-occurrence of a 
mathematical pathology called singular con
tinuous spectrum in atomic and some other 
multiparticle quantum systems. Shortly 
thereafter, in several papers, I exploited the 
method to study resonances and, in particu
lar, the mechanism whereby an embedded 
bound state turns into a resonance. Then 
quantum chemists and calculational atomic 
physicists, led by John Nutall (University of 
Western Ontario), got interested in the 
method as a practical way of computing reso
nances from first principles. Some of the 
significant work on molecular resonance was 
done by Bill McCurdy, now at Ohio State, 
and Tom Resignio, now at Lawrence Berke
ley Laboratory, who learned the method 
while working (as graduate student and post
doc respectively) in Professor of Theoretical 
Chemistry Vince McKoy's group here at 
Caltech. 

As we shall see, the group of dilations 
continued analytically plays a critical.role in 
the Aguilar-Balslev-Combes theory. Combes, 
being French,· dubbed the method "dilatation 



analyticity," later shortened to "dilation 
analyticity." The atomic physiCists and quan
tum chemists, not liking fancypants language, 
called the method "complex scaling," the 
most common name now. 

We begin by describing the idea for the 
case of the hydrogen Hamiltonian, 

H - -;:1 - Irl-1, 

whose spectrum has a continuous part 

[0,00 }, 

and a discrete part,lhe eigenvalues at 

-! n-2 (n=1,2 ... ). 

Under the scale transformation 

H goes into 

H(O} = -e-29;:1-e-9Irl-1. 

This operator has a natural analytic continua
tion to complex 

o = q> + ill (q>,11 real). 

What is the spectrum of H(O}? The continu
ous spectrum should come from states near 
infinity where I r I-I doesn't count; that is, the 
continuous spectrum should be that of 

-e-2(<p+ill);:1 

(this can be made precise by a theorem of 
Weyl). Since this operator is just a multiple 
of -;:1, its spectrum is just 

(e-2(9+i ll)ala in [0,00») - {e-2i1']ala in [0,00»)' 

Thus, as 11 varies, the continuous spectrum 
moves away from the real axis. However, a 
separate argument shows that the discrete 
eigenvalues 

1 -2 --n 
4 

don't move. As the contiriuous spectrum 
swings down, new eigenvalues can appear, 
but only out of the continuous spectrum. Put 
differently, ifll>O is decreased to 0, any 
eigenvalue of H(O) persists, except that if the 
continuous spectrum hits them, they can be 
gobbled up and disappear (the Pac Man 
theory of resonances??). Clearly, one should 
associate these new eigenvalues with reso
nances. Such eigenvalues do not occur for 
the hydrogen Hamiltonian, but for multiparti
ele Coulomb Hamiltonians there isa similar 
theory: H - T + V, the kinetic and Coulomb 
energy 

b 
x x 
a a 

The Spectrum of IIre) 

(a) Discrete eigenvalues of II 

(b) Thresholds of II 

(e) Resonance eigenvalues 

Now the continuous spectrum is in various 
rays, 

{t+e-2ill ala in [O,oo)} 
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where t is a possible scattering threshold of 
the system. Eigenvalues of H(O) do occur and 
can be computed accurately by variational 
methods. Moreover, this precise mathemati
cal definition of resonance allows the rigorous 
study of a wide variety of objects. For exam
ple, I was able to prove the convergence of 
time-dependent perturbation for Auger states, 
and Evans Harrell (Georgia Tech) and I, 
using the extension of the theory to Stark 
Hamiltonians (due to Ira Herbst of the 
University of Virginia), were able to make the 
Oppenheimer-Lanczos formula for the lead
ing asymptotics of Stark resonances in hydro
gen a mathematical theorem. 

What then does the theory of Schr6dinger 
operators accomplish? There is an occasional 
contribution to other parts of physics, espe
cially in areas such as the theory of reso
nances or the theory of random impurities, 
where there are mathematical subtleties with 
real physical significance. Also, there are 
important spinoffs to mathematics. To name 
two areas, operator theory, especially spectral 
analysis, and the theory of path integrals have 
been illuminated in significant ways during 
the recent past by the theory of Schr6dinger 
operators. But in the end, there is the inter
nal dynamic connected with intellectual 
honesty - precisely what can and what can
not be explained rigorously from first princi
ples, starting with the basic formalism of non
relativistic quantum mechanics? There 
results a theory of great beauty with intimate 
connection to a wide variety of aspects of 
both mathematics and theoretical physics. 0 

x 
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