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he mathematical theory of probability onginated with
attempts to analyze games of chance involving cards and
dice. Even modern textbooks on probability devote sub
stantial space to examples and calculations related to gam
bling games. What is less well known is the extem to
which certain methods of s~tistical inference are also in
timately related to the study of gambling.

One such area is my own research specialty, sequential
analysis, which is based upon the idea of sampling data
, 'one point at a time, " the total amount of sampling being
determined by carefully specified rules. These rules call
for larger samples when the data are inconclusive, and
smaller samples when early results are dramatic. Methods
of sequential analysis have been applied to a broad range
of practical problems, and have been particularly success
ful in areas such as clinical trials, reliability testing, and
quality control, where the taking of data is necessarily
spread out over time or is very costly. A great many prob
lems of statistical inference can be solved by sequential
methods, usually with much greater efficiency than is
possible using classical techniques that take a sample of
fixed size.

Because of the one-at-a-time nature of sequential
sampling, the performance of these statistical procedures
depends on the same sort of "chance fluctuation" phe
nomena that are of interest to gamblers. It is therefore not
surprising that many of the methods of probability theory
that have proved useful in the theory uf seljuential analysis
are also quite illuminating when applied to questions about
gambling such as: What are the chances of winning a lot
of money in a particular game? What makes some bets and
betting schemes successful more often than others?

Let's analyze the following situation. Suppose you find
yourself in a gambling casino with $100 in your pocket
and feel a desperate need to win $2000. Which of the fol
lowing bets would be the best way to start?

(A) Put $10 on "8 the hard way" at craps.
(B) Risk $40 on "red" at roulette.
(C) Wager $10 on the "pass line" at craps.
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A typical Caltech student would check the odds and per
centages:

A pays $90 profit, but the odds against it are 10 to I,
and the percentage in favor of the house is 9.1 percent.

B pays $40 with odds of 10 to 9 against, and the house
percentage is 5.3 percent.

C pays $10 with unfavorable odds of 36 to 35 (approx
imately), and the house percentage i~ 1.4 percent.

To make the choice more definite, let's assume that,
whichever you choose, you will continue with the same
proposition and will always bet the same fraction of your
money, no matter how much you have, until you win your
bundle (if ever). For example, if you choose A and get up
to $500, you will wager $50 on the next turn.

Are you ready for the answer? It appears anhe end of
the next paragraph, so to avoid prejudicial information you
should make your decision now.

The most popular choice is the third, based on the low
house percentage. Some prefer the second, because it in-

Figure 1. Probability of 20-fold win on the pass line.
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Figure 2. Probability of 20-fold win with various payoff ratios. All
calculations assume 1) the fraction of money risked is 10 percent,
and 2) the house advantage is 2 percent; that is, if R is the payoff ratio,
then .98/(1 +R) is the probability of winning on each bet.

valves betting a larger fraction of your capital (which
hdp~). Only au occMioual optimist or dcvil' s advocate
picks the first, but that is actually the best bet of the three
(and the third is the worst).

Tn fact, all three bets give the player roughly the same
chance of success - small. Your probability of winning is
2.32 percent with A, 2.31 percent with B, and 2.14 per
cent with C. In a perfectly fair game (with no advantage
for the casino) your chances of turning $100 into $2000
would be 1 in 20, or 5 percent. Why are the probabilities
of A, B, and C so much lower? And how can it be that A
is the best?

Figures 1 and 2 provide some insight into the answer. It
is true that lower house percentages, like the one in C,
help the player's chances But there are two other impor
tant factors. One is the fraction of your money that you
risk on each bet. The other is the payoff ratio - the num
ber of dollars profit for each dollar bet when the bet wins.
Figure 1 shows how dramatically the chances of a big win
are reduced by risking small fractions of your money. Op
tion B beats option C by virtue of risking 40 percent rather
than 10 percent. Figure 2 illusuates the improvement in
the player's chances resulting from a high payoff ratio. Bet
A risks the same fraction as bet C and faces a much
tougher house percentage, but its 9-to-l payoff ratio more
than compensates for this disadvantage.

Gambles like these can be analyzed easily by the
methods of modem probability theory. One of these
methods uses the notion of a martingale, the mathematical
model of a fair game, which is used extensively in sequen
tial analysis. Fair games have very nice mathematical
properties. As mentioned before, the chances of turning
$100 into $2000 are 1 in 20, and any other ratio works the

same way. For example, the chances of turning $56.30
into $347.50 are 563 out of 3475.

A gambler using system A is playing an unfair game, of
course, so his chances of winning can't be calculated that
easily. But there is a trick we can use - a way of "keep
ing score" so that the game becomes fair. For example, in
system A, if the player has $100, his score is (100)1256,
the number 100 raised to the power 1.256 (which is easy
to compute on a scientific calculator). If he gets to $2000,
his score is (2000)1.256, and so on. Why 1.256? Because
this is the power (which I like to call the "casino power")
that makes the scores behave like a fair game. Starting
with (100)1.256=325.1, the chances of making it to
(2000)1.256= 13,998.9 are 3251 out of 139,989, which is
the 2.32 percent mentioned earlier.

How is the casino power of 1.256 for bet A calculated?
The player starting with $100 has one chance in 11 to win
his $10 bet and jump up to $190, and 10 chances in 11 to
lose and drop down to $90. If the power p is used for
"scoring," then the player has a score of lOOP initially
and after the first bet has either 190Por 9OP. Taking
account of the respective prObabilitieS, his score after the
first bet is, on the average,

.1... x I90P + !.Q x 9QP.
11 11

If this equals lOOP - his score before betting - then
the game is fair. And this requires p = 1.256. Similar
reasoning applied to hets Rand C yields p = 1.257 and
p = 1.283, respectively. Note that the smaller the casino
power p, the better are your chances of winning, which are
lOQP out of 2000P, or (.05)P. Ifp = I, then the original
bet is fair. Unfavorable bets will always have a casino
power p bigger than 1. (The only exception is a bet with
literally no chance to win, for which the casino power is
undefined and, no doubt, of limited practical interest.)
One of the nicest features of the notion of casino power is
the fairly obvious principle that the chances of winning in
a sequence of different types of bets are no greater than
they would be if all of the bets had the same casino power
as the best bet in the sequence. This simple principle
makes it easy to refute. a lot of the intricate betting
schemes (particularly for craps) that are studied at length
in the pseudo-scientific gambling literature.

The best casino power I know of for an unfavorable
game is p = 1.0081 for craps in casinos that offer <'uou
ble odds" side bets. This is obtainable by betting one-third
of yOUT current capital on the pass line and the remaining
two-thirds behind the line. (For explanations of these
terms, consult your local croupier.) Since casino chips
don't come in fractions, you can only approximate this
scheme in actual play, but casino powers of about 1.009
can be achieved in this way by players who are willing to
risk everything at once. (Of course, the game of blackjack
is favorable under proper conditions, and more limited bet
sizes are advantageous III tavorable games, where
casino power is an irrelevant notion.)
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What does all this have to do with statistics? Surprising
ly enough, the same kind of calculations arc needed to de
tennine the chances of error in a statistical test. What's
more, the most efficient methods for testing statistical
hypotheses. those of sequential analysis. involve some of
the same mathematical problems that a gambler is con
cerned with.

To understand these problems, consider the following
hypothetical problem in statistics. You have a very large
box containing millions of marbles, some of them white.
the rest red. You want to pick at random a sample of a
slllalll1umber of marbles and infer which color the major
ity of marbles are. The classical methods of statistics lead
to procedures like this: Determine in advance a sample
size, take a sample of that size. and see which color most
of the marbles in the sample are.

The chances of error in a test like this depend on the
size of the sample and on the actual fraction of red mar
bles in the box. If 45 percent of the marbles are red, and
we sample 121 (a convenient size for later comparison),
then the probability of getting 61 or more red marbles in
the sample is 13.5 percent, and this is the probability of
error; if 48 percent of the marbles are red, the probability
of error is much larger, namely, 33 percent. We can re
duce the chances of error by taking a larger sample size.
For example, sampling 241 marbles will yield error prob
abilities of 5.9 percent for 45 percent red and 26.7 percent
for 48 percent red.

The main goal of statistical theory is to find methods of
sampling and drawing inferences that are the most efficient
- that is, have the smallest possible error probabilities for
a particular sample size. Said another way, if we want spe
cified error probabilities, then the most efficient tests are
those that require the smallest possible sample size.

Going back to our problem with the marbles, it's hard to
see how one could possibly improve upon the efficiency of
the test that draws a sample and picks the color of the
majority of that sample. In fact, there is a famous theorem
in statistics that guarantees that no test taking a sample of
121 marbles can possibly improve upon the error probabili
ties of that test. Nevertheless, there are more efficient tests.
These tests do not fix the sample SIze In advance, but In

stead sample marbles one at a time sequentially, following
a previously specified rule for stopping the test and decid
ing which color predominates.

This approach to statistical inference, called sequential
analysis, was developed in the mid-1940s by a mathema
tical statistician named Abraham Wald, whose book on the
subject opened up new fields of research and applications.
Wald's principal method, called the Sequential Probability
Ratio Test (SPRT), gives recipes like the following for the
marble problem: Sample one at a time until you have II
more marbles of one color than the other. This. could hap
pen after II marbles, if all are the same color, or, perhaps,
after 41 marbles arc sampled, 26 white and 15 red. When
ever this situation occurs, the SPRT stops and decides
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the color that's ahead is in the majority in the box of
marblcs.

This process can be considered as a game in which a
gambler bets even money that the next color drawn will
be red. Think of the gambler starting with 11 chips and
betting one at a time until he loses all II chips or wins II
more chips. That corresponds exactly to the rule for car
rying out an SPRT, but it is also an example of the famous
"gambler's ruin problem. " In fact, if the ratio of red to
white marbles in the box is 9 to 10, this is just like betting
on red in Las Vegas roulette.

What iU'C the probabilities of error for the SPRT? They
depend on the true percentages of the two colors in the
box, just as they do for fixed sample size tests. If there are
45 percent red marbles. say. then an error is made if the
gambler gets II ahead without previously getting II be
hind in a game where he has a 45 percent chance to win on
each bet. To solve this "gambler's ruill problem," we can
use the same idea of inventing a scoring system to make a
fair game. Start off with a score of 1 and multiply the
score by 55/45 every time he wins, and by 45155 every
time he loses. Since the chances of these are 45 out of 100
and 55 out of 100, respectively, on the average each bet
multiplies his score by

~x.12..+...11.x.:!1= ..11+~= L
100 45 100 55 100 100

So on the average this score goes neither up nor down, and
the game is filiI. If he win~ the 11 chips, his score at that
time will be (55/45)11, whereas if he loses, it will be
(45/55)11. If P and 1-p are his probabilities of winning
and losing, then his average score when the game stops is

p (55/45)11 + (l-p) (45/55)11.

Since the scoring system makes the game fair, this average
score at the end must equal his score at the beginning,
which was 1. That fact gives a simple equation to solve for
p, and the answer is p = .099. Thus the probability of
error is 9.9 percent for the SPRT when there are 45 per
cent red marbles in the box. For 48 percent red marbles,
the same calculations with 45 and 55 replaced by 48 and
52 show that the error probabIlIty IS 29.3 percent.

Why should a statistician want to use a test like the
SPRT that imitates a gambling game? Because it is more
efficient than fixed sample size tests. It turns out that the
average number of marbles sampled by the SPRT depends
on the proportions of red and white marbles in the box, but
the worst case is the one where the two colors are equally
numerous. In this case the sample size of the SPRT is 121,
on the average - exactly the same as the fixed sample
size test discussed earlier. So it makes sense to compare
their error probabilities.

In the table below, which compares the error probabili
ties and average sample sizes of the SPRT with those of
the fixed 1>alllplc size tc1>t discus1>ed earlier, nutice that the
SPRT yields improvements both in error probabilities and
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in average sample sizes. Of course, one can make other
comparisons. For example, suppose we specify that the
probability of error should be no more than 9.9 percent if
45 percent of the marbles in the box are of one color and
55 percent are of the other color. Then the smallest fixed
sample size that accomplishes this is 164 - almost twice
as large as the average sample size of the SPRT for these
percentages of the two colors. Tn fact, Walrl and Jacoh
Wolfowitz proved over 30 years ago that the SPRT is the
most efficient possible test in a certain sense. For exam
ple, every other test needs a larger average sample size
than 88.2 to obtain 9.9 percent error probabilities in the
case of 45 percent or 55 percent red marbles.

Probability

of Test Error Average Sample Size

Fraction
of red Fixed Fixed

marOles sample sampLe
in box SPRT size SPRT size

45% 9.9% 13.5% 88.2 121
48% 29.3% 33.0% 113.8 121
50% 121 121
52% 29.3% 33.0% 113.8 121
55% 9.9% 13.5% 88.2 121

Other efficiency criteria are important, however, and it
turns out that the average sample size of 121 in the worst
case can, in fact, be made smaller by choosing a different
sequential test having the same 9.9 percent error probabili
ties. Finding tests that have the smallest possible average
sample size in the worst case has been recognized as an
important problem in statistical theory since it was first
studied over 20 years ago by Jack Kiefer and Lionel
Weiss. Among the difficulties associated with the problem
is the fact that, except for situations like our rmtrble prob
lem that have a symmetrical character, it is not possible to
identify the worst case in advance. It depends on the se
quential test that is used. What we really want is the test
whose worst performance is better than the worst perfor
mance of all other tests with the same error probabilities.

The problem of finding such tests, called "Kiefer-Weiss
solutions," remains unsolved. However, work done in the
last few years at Caltech has produced practical methods
for constructing sequential tests that come close to solving
il, a.uu arc, tIICldUlC, llci:l.lly as dfi",k.ul as pussiuk ill this
sense. The kind of sequential test that accomplishes this
can be described most easily by a picture. Suppose that
after we sample each marhle, we plot a point on a graph of
S versus N (above, right), where N is the number of mar
bles we've sampled so far, and S is the number of red
marbles so far, minus the number of white marbles. Then
an SPRT can be pictured by drawing a pair of parallel
lines (dotted lines in the picture) that correspond to par
ticular valuesof S, like + 11 and - 11. Whenever one of
the plotted points reaches one of the dotted lines, the
SPRT stops sampling. The solid lines in the picture, on the
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other hand. represent another s"''1l1",nti,,1 t"'st. which stops
sampling when one of the plotted points reaches or crosses
over one of these lines.

My own research on the Kiefer-Weiss problem identi
fied a class of sequential tests that look like the solid-line
picture, which I called 2-SPRTs because they are con
structed from pieces of two different SPRTs in a certain
way. It turucu uut thal onc ",uulu provc thatlhesc ~cl/ucn

tial tests are very nearly the best possible in a sense closely
related to the Kiefer-Weiss problem. My student, Michael
Huffman, recently showed in his PhD thesis how to
choose from the class of all 2-SPRTs those tests that will
come the closest to solving the Kiefer-Weiss problem.
Though all of this theory is what statisticians call "asymp
totic" (that is, based on what would happen if the sample
sizes were very large), it is possible to make very detailed
calculations on a computer that show in particular situa
tions just how close these methods come to solving the
Kiefer-Weiss problem. In typical applications, the answer
seems to be that one achieves about 97 or 98 percent of the
best possible efficiency.

Current research in sequential analysis is expanding the
scope of both theory and applications. Recent work has led
to the development of useful sequential procedures in
many classical areas of statistics, such as the analysis of
variance, nonparametric statistics, and the design of ex
periments. A growing stockpile of techniques has taken
tile thcUlY uf SCl/uculial i:l.lIalysis fal UCyVllU thc stuuy uf
the Sequential Probability Ratio Test and its refinements.
Some of the problems now being solved by sequential
an31ysis methods, such 3S reactions to trends and changes
in distribution, and assignment of confidence intervals
with fixed precision regardless of the variance of the data,
cannot be dealt with at all by fixed sample size techniques.
Along with all of this usefulness and respectability comes
the continuing realization that sequential analysis, perhaps
more than any other branch of statistics, is firmly rooted in
the phenomena that govern one of mankind"s most cher
ished disreputable pastimes: gambling. 0
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Probability

of Test Error Average Sample Size

Fraction
of red Fixed Fixed

marOles sample sampLe
in box SPRT size SPRT size
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50% 121 121
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