The emergence of
number theory as a
by-product of
numerology is
analogous to that of
another great
science, astronomy,
which owes its
origins cto a
pseudoscience,

astrology.



By Tom M. Apostol

The prime number
theorem was proved in
1896 by Charles-Jean de la
Vallée Poussin and Jacques
Salomon Hadamard,
working independently of
each other. Both de la
Vallée Poussin (top left)
and Hadamard (top right)
built on the legacy of
work by many previous
mathematicians, including
(in clockwise order from
Hadamard) Carl Friedrich
Gauss, Pafnuty Lvovich
Chebyshev, Georg Friedrich
Bernhard Riemann, and
Leonhard Euler.

A Centennial History
of the Prime Number Theorem

This year mathematicians all over the world are
observing the 100ch anniversary of the first proof
of the prime number theorem, a landmark discov-
ery in the history of mathematics. This famous
theorem tells us what proportion of the positive
integers are prime numbers. (The positive
integers are the counting numbers: 1, 2, 3, 4, 5,
and so on; a prime number is a positive integer
greater than 1 that 1s divisible only by itself and
by 1.) The prime number theorem is part of a
branch of machemactics called number theory,
which deals with properties of all the integers—
positive, negative, and zero. The first proof was
obtained independently in 1896 by two young
mathematicians—Frenchman Jacques Salomon
Hadamard, age 31, and Belgian Charles-Jean de
la Vallée Poussin, age 30. Theirs was a remarkable
achievement, the culmination of a century of
efforts by an international collection of celebrared
marthemaricians.

The positive integers were undoubtedly
humanity’s first machematical creation. It is
hardly possible to imagine human beings without
the ability to count, at least within a limired
range. Numbers were used for record-keeping
and commercial transactions for centuries before
anyone thought of speculating about the nature
and properties of the numbers themselves. This
curiosity developed into a sort of number-mysti-
cism ot numerology, and even today numbers such
as 3,7, 11, and 13 are considered omens of good
or bad luck. The emergence of number cheory as
a by-product of numerology is analogous to that
of another great science, astronomy, which owes
its origins to a pseudoscience, astrology.

The first scientific approach to the study of the
integers, that is, the true origin of number theory
(still intermixed with a good deal of number
mysticism), is generally atcributed to the ancient
Greeks. Around 600 B.C. Pythagoras and his
disciples classified the positive integers in various
ways; examples include
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Even numbers:

2. 6800 T2 14 16, 18,20

Odd numbers:

Lo Dl 9 Bl AR AT, 19 ...

Prime numbers:

2,5, 5,7, 115 13,17, 19,23, 29, 31, 37,41,
AR AT Sy o

Composite nunibers:

d 6, 8.0 I 120 18 T8, 16, 18, 20, ...

Numbers chat aren’t prime are composirte,
except that the number 1 is neither prime nor
composite. The Pythagoreans also linked numbers
with geometry and with music—rthe latter by dis-
covering the relationship between the length of a
plucked string and its harmonic properties. (For
example, a string that is one-half as long as
another string under equal tension will sound
an octave higher.)

The first systematic study of prime numbers
appeared around 300 B.C., when Euclid wrote his
Elements, a remarkable collection of 13 books that
contained much of the mathemartics known at that
time. Books 7, 8, and 9 deal with properties of
the integers and contain the early beginnings of
number theory, a body of knowledge that has
flourished ever since. It has grown into a vast and
beautiful branch of mathematics that for centuries
has attracted the attention of both amarteur and
professional mathematicians. It attracts amateurs
because most of its problems are simple to state
and easy to understand. It attracts professionals
because these same problems are often difficult to
solve, and reveal relations of great depth and
elegance.

Prime numbers derive their importance from a
theorem, called the fundamental theorem of arith-
metic, which was first enunciated by the German
mathematician Carl Friedrich Gauss. This theo-
rem states that every integer # greater than 1 can
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Courtesy of The Huntingron Library, San Marino, California

Very little is known of the life of Euclid, who flourished

around 300 B.C. and whose |3-volume Elements distills
most of the mathematical wisdom of his day. He founded
a school at Alexandria, in Egypt, and was a personal tutor
to King Ptolemy |. When asked by Ptolemy if there was
no shorter way to learn geometry than reading all 13
books, Euclid is said to have replied, “There is no royal

road to geometry.”
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The largest known prime, as of September 3,
1996, is 2423018 < 1= je contains 378,632
digits, which, if printed in the Los Angeles

Times, would fill 12 pages.

be factored as a product of prime numbers in one
and only one way, if one ignores the order of the
factors. For example, the number 12 has three
different factorizations (1 X 12, 2 X 6, and 3 X 4)
in which at least one factor is composite, bur only
one factorization (2 X 2 X 3) in which all the fac-
tors are primes. The fundamental theorem shows
that the prime numbers are the building blocks of
the mathematical world, just as the fundamental
particles of physics are the building blocks of the
physical world.

The fact that every positive integer is a product
of prime numbers was known in Euclid’s time, but
the unigueness of that factorization was first explic-
itly stated by Gauss in 1801 in his Disquisitiones
Avithmeticae, one of the earliest books devoted
exclusively to number theory. Gauss deduced the
fundamental theorem from Proposition 30 in Book
7 of Euclid’s Elements, which states thar if a prime
divides a product of two integers, then that prime
must also divide at least one of the factors. Gauss,
who is hailed as the greatest pure mathemartician
of all time, made enormous contributions to other
branches of mathematics, as well as to astronomy
and physics, but he considered the Disguisitiones
to be his greatest work.

Proposition 20 in Book 9 of the Elements states
that there are infinitely many primes. Many
proofs of this theorem exist, but Euclid’s original
proof is the most elegant. It is a proof by contra-
diction that goes as follows. Suppose that there
were only a finite number of primes, and let P
denote their product. Look at the number Q = P +
1. Since Q is greater than 1 it must be divisible by
some prime occurring in the product P, because P
contains @// the primes. However, such a prime
would also divide their difference Q — P, because
whenever two numbers (say, 35 and 20) have a
common facror, their difference (in this case 15)
also has that factor (5, in this example). But in the
case of Q and P this is impossible, because Q — P is
equal to 1 and no prime divides 1.



Leonhard Euler (1703-
1783) lost the use of his
right eye to overwork
when only 28. When a
friend attempted to
commiserate, Euler is said
to have remarked, “I shall
now have fewer distrac-
tions.” A cataract robbed
him of his other eye at age
51, but his work continued
undiminished with the
assistance of his sons, an
excellent memory, and a
remarkable knack for

mental computation.

A more sophisticated proof of Euclid’s theorem was given many centuries later by the Swiss mathemati-
cian Leonhard Euler. In 1737, Euler showed that by adding the reciprocals of successive prime numbers
you can attain a sum greater than any prescribed number. (This is written symbolically as

| 1 1 1 | 1 | 1 7 T
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where the eo represents infinity, and the - indicates that the sum is to be continued indefinitely.) There-
fore, there must be infinitely many primes—otherwise the sum would be finite. Mathemaricians describe
this by saying that the infinite series of reciprocals of the primes diverges.

A question that presents itself at the very threshold of mathematics is this: How are the primes
distributed among the positive integers? Detailed examination of a table of primes reveals great irregu-
larities in cheir distribution.

Some primes are very close together, like 3 and 5; 11 and 13; 17 and 19; or 59 and 61—these are
examples of pairs of twin primes, primes that differ by 2. Twin primes keep recurring as far as we can
see, as the rable below shows.

s | v | 1o | e | a0 | 1@ | 10 | e | d0e | pov
| ‘ | | i .
number of [ |
twin prine 35 205 | L224 8,169 58,980 440,312 | 3,424,506 | 27,412,679 (224,376,048
pairs less ‘
than x | I

The largest known pair of twin primes is 242,206,083 x 259 plus and minus 1. (The largest known
prime, as of September 3, 1996, is 2"*77% — 1 it contains 378,632 digits, which, if printed in the Los
Angeles Times, would fill 12 pages.) It would appear that there are infinitely many pairs of twin primes,
but to date no one knows whether or not this is true. In 1919, the Norwegian mathematician Viggo
Brun tried to use Euler's method to prove that there are infinitely many pairs of twin primes, but instead
he found that the sum of the reciprocals of all the twin primes is not divergent but has a finite sum, now
called Brun’s constant B:

B=G+H+d + D GEF+H+G+ H)+

Its value to five decimal places is 1.90216, which gives you some idea of the scarcity of twin primes, even
if there are infinitely many of them.

But there are also large gaps between consecutive primes. For example, there are no primes between
20,831,323 and 20,831,533, In fact, ic is easy to prove that arbitrarily large gaps must evenrually exist
between primes. Choose any integer # greater than 1 and look at cthe set of # — 1 consecutive numbers
nl+ 2,0+ 3, 0 +4,..., 7! +n (The exclamation mark, called a factorial, indicates that the # in 7! is to
be multiplied by all the positive integers less than it—for example, 5! = 5 X4 X 3 X 2 x 1.) All of che
numbers in this set are composite (2! + 2 is divisible by 2, »! + 3 by 3, »! + 4 by 4, etc.), and since » can
be as large as you please, this means that there must eventually be arbicrarily long strings of consecutive
composite numbers, and hence arbicrarily large gaps berween consecutive primes. So we see thar consecu-
tive primes can be very close together, or very far apart. This irregular distribution is one of the difficul-
ties inherent in the study of primes. Another difficulty is that no simple formula exists for producing all
the primes.

Euclid’s theorem on the infinitude of primes can be stated another way. Arrange the primes in increas-
ing order and let p denote the nth prime, so thatp = 2,p, = 3,p, =5,p, =7, ... . We can regard p as
a function of #. Euclid's theorem states that p becomes as big as you want it to be as » increases without
bound. Mathematicians describe this by saying that p_ tends to infinity as # tends to infinity; in symbols,
p, —>ecasn—> 0. How fast does p, go to infinity? Since not all positive integers are primes, p must
grow more rapidly than ». But what is the actual growth rate of p, for large #?

The prime number theorem—the title character of this tale—answers this question. The prime
number theorem states that, for very large », p, is about the size of » log #, where log # is the natural
logarithm of # (the logarichm of # to the base ¢, sometimes written as log,r n,oraslnme=271828...).
This is expressed symbolically as follows:

pn ~ nlogn as n— oo.
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Carl Friedrich Gauss
(1777-1855) was a child
prodigy who, he once said,
“could count before he
could talk.”” Gauss reveled
in computations for their
own sake. When Guiseppe
Piazzi of the Palermo
Observatory discovered the
first asteroid, Ceres, on
January 1, 1801, only to
lose it again 40 days later
as it appeared to approach
the sun, Gauss sat himself
down and computed its
orbit from three of Piazzi’s
observations. Ceres was
rediscovered within a
year's time by several
astronomers using Gauss’s

calculations.
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The symbol ~ is read as “is asymptotically equal to,” which means rhat you can make rhe ratio n—{;ﬁg—n get
as close to 1 as you like by pushing » farther and farther out toward infinity.

One can also turn the growth-rate question on its head and ask, how many primes are there thar are
less than or equal to any given positive value of x? This number depends on x and is denoted by m(x).
If a table of primes is available, n(x) can be determined by simply counting the number of primes up
to x. Bur don't panic if you can't find a table, or if the one you have isn't big enough—a second, logically
equivalent version of the prime number theorem states that n(x) is asymprotically equal to x divided by
the natural logarithm of x. In symbols this is written as follows:

w{x) ~ G;;—\ A8 X “—> ©O.

Again, this means that the ratio 79/ approaches the limit 1 as x goes to infinity.

People began to speculate about the distribution of primes after extended tables of primes appeared
in the 17th and 18th cencuries. In 1791, the 14-year old Gauss examined a table (compiled by Johann
Heinrich Lambert in 1770) that listed all the prime numbers less than 102,000. Gauss counted the
primes in blocks of 100, 1,000, and 10,000 consecutive integers, and made a note in his diary cthat the
function 1/log # was a good approximation of the average density of distribution of primes in the incerval
from 2 to #. He offered no proof, only the numerical evidence he obtained by looking at che cable. In
1797, when Georg Freiherr von Vega published an extended table of primes up to 400,031, Gauss
substantiated his hypothesis further, and he kept returning to this work as new tables of primes appeared.
Many years later, in 1849, he communicated his observations in a letcer to the ascronomer Johann Franz
Encke, and the results were published posthumously in 1862, (Gauss died in 1855.) Based on tables
listing primes up to 3 million, Gauss observed that n(x) is closely approximated by the integral of the
density function, f; dnflogn. (This is called the logarithmic integral and is denoted by Li(x).) The table
below is adapted from his letter to Encke. It shows n(x) and Li(x) for x between '/, million and 3 million.
The agreement berween m(x) and Li(x) is striking—the error in each approximation is only about one-
tenth of one percent.

X m(x) Li(x) % error
500,000 41,556 41,604 .4 0.12
1,000,000 78.501 78,627.5 0.16
1,500,000 0 114,263.1 0.13
2,000,000 148,883 149,054.8 0.11
2,500,000 183,016 183,245.0 0:12
3,000,000 2.6, 145 216,970.6 0.10

The first textbook devoted entirely to number cheory was published in 1798 by a Frenchman, Adrien
Marie Legendre. In the second edition of this text, published in 1808, Legendre also considered the
problem of the distribution of primes. An appendix page from Legendre’s second edition displays
approximations to m(x) for various x up to a million. Legendre asserted that n(x) is closely approximated
by the quotient

7
log x — 1.08366 ~

On a later page Legendre states that m(x) is approximately equal to the quotient

SN S
log x — Alx)

where A(x) is an unspecified function of x that approaches 1.083606 as x goes to infinicy. It seems likely
that Legendre introduced the number 1.08366 to make his formula approximate n(x) more closely.

Neither Gauss nor Legendre revealed how they arrived at the appearance of the natural logarithm in
their formulas, Nor did they make any explicit statement about how good they thought these approxima-
tions were outside the range of the existing prime number tables. Tt is generally understood that borh
intended to imply that the ratio of m(x) to each approximaring formula tends to the limit 1 as x tends to
infinity. An elementary calculus exercise shows that Gauss’s logarichmic integral Li(x) is asymprotically
equal to x/log x, so the conjectures of Gauss and Legendre are both equivalent to rhe stacement now
known as the prime number theorem:
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w(x) ~ log x

m(x)
asx — o0, which means {5 — lasx — oo
0g ¥

This is one of the most astonishing results in all of mathemartics. It describes a simple relation between
the primes and the natural logarithm function—which, at first glance, has nothing to do with prime
numbers.

It’s natural to ask what led Gauss and Legendre to use the natural logarithm in their formulas. They
did not leave any written clues; they simply recorded their formulas and the supporting data. Let’s see
how one might be led to conjecture the prime number theorem by examining a table of primes. Below
are some values of n(x). This table lists the number of primes less than successive even powers of 10.
Gauss had access to tables that only went up to 3,000,000—the last four columns have been added from
more modern tables.

x | 10? ‘ 10 ‘ 10¢ ‘ 10® ‘ 10" ‘ 10" ‘ 10"
() | 25 ‘ 1,229 ‘ 78,498 ’5,761,455‘433,052,512‘57,6()7,912,018‘ 3 204941750802

What can we learn by looking at these numbers? Since we want to find how fast n(x) grows with x, it’s
natural to look at the ratio x/n(x), which compares the two quantities. The next table shows the corre-
sponding ratios.

x 10 10 10¢ ‘ 10° 10" 10" 10"
i

() 25 1,229 78,498 5,761,455 | 455,052,512 | 37,607912018 | 3204941750802

x/mlx) 4.000 8.137 12.739 ‘ 17357 21973 26.590 31.202

Notice the differences between successive entries in that row of numbers: 4.137, 4.602, 4.618, 4.618,
4.615, 4.612. In each interval where the exponent of 10 increases by 2, we see chat the ratio x/m(x)
increases by an almost constant amount, 4.6, which is 2.3 times the change in the exponent of 10. But if
x is expressed as a power of 10, then the exponent of x is the logarithm of x to the base 10. So the table
indicates that the change in the ratio x/n(x) is approximately equal to 2.3 times the change in log,  x.
What abour this strange factor 2.3? A bright 14-year-old such as Gauss would immediately realize that
the factor 2.3 is very nearly the logarithm of 10 to the base ¢ (in fact, log 10 = 2.3026...), so

23 log,, x = (log, 10)log x) = log x = log x.

This suggests that we compare the ratio x/m{x) with the natural logarithm of x. Our table now looks like
this:

x 10° 10 10¢ 10° 10" 10" 10"
-~ 25 1,229 78,498 5,761,455 | 455052512 | 37,607912018 | 3204941750802
o 4000 | 8137 12.739 17.357 21.975 26.590 31.202
log x 4.605 9.210 13.816 18.421 23.026 27.361 32.236
log x/(x/n(x)) 1.151 1.132 1.085 1.061 1.048 1.039 1.033

Anyone looking at this last row of numbers would surely be tempted to conjecture that they approach

1 as x approaches infinity. Gauss, Legendre, and many other eminent mathematicians of the early 19th
century apparently thought so, but they were unable to prove it. As far as we know, neither Gauss nor
Legendre made any significant progress toward a proof.
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Peter Gustav Lejeune Dirichlet (1805-1859) was deeply
influenced by Gauss, and kept a much-thumbed, well-worn
copy of the Disquisitiones Arithmeticae at his side at all
times. Dirichlet was said to be one of the first people to
actually understand this masterwork, and did much to
make it accessible to others. In later years, Dirichlet
became a friend of Gauss’s as well as a disciple, eventually

succeeding him to the professorship at Gottingen.

In the 1808 edition of his book, Legendre made another conjecture—on prime numbers in arichmetic
progressions—that plays a tangential role in this story. An arichmetic progression is a sequence of num-
bers in which the difference between any number and its predecessor is a constant. So if the first term in
the progression is A and the common difference is £, the progression consists of all numbers of the form
kn + b as n runs through all the nonnegative integers 0, 1, 2, 3, ... . For example, if 5 = 1 and & = 2,
the progression consists of all numbers of the form 2» + 1; these are the odd numbers: 1, 3,5,7,9, 11,
13, ... . This particular progression contains infinitely many primes—in fact, it contains all of them
except the prime number 2. The odd numbers, in turn, can be separated into two new progressions—
those numbers of the form 4nz + 1,

1,5,9,13,17,21, ...,4n+1, ...
and those of the form 4# + 3,
Bl 1l T N925: e et B

Again, each of these progressions contains infinitely many primes.

Primes in the progression 4z + 1 had already been investigated by the leading mathemartician of the
17th century, the Frenchman Pierre de Fermar. He discovered the surprising result that every prime of
the form 4z + 1 is the sum of two squares. For example, 5 = 124 2%, 13 = 22+ 37, 17 = 1’+ 4% and 29 =
2?4+ 5% Although he never investigated the distribution of primes, Fermat was the first to discover really
deep properties of the integers and is generally acknowledged to be the father of modern number theory.

But returning to the more general progression £z + 4, you can see that if 4 and £ have a common prime
factor p, then each term of the progression is divisible by p and there can be no more than one prime
in that progression. Legendre conjectured that there must be infinitely many primes in the progression
kn + b if b and £ have no common prime factor, but he offered no proof.

In a celebrated paper published in 1837, the German mathematician Peter Gustav Lejeune Dirichlet
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Dirichlet's proof was an incredible accomplishment.
birth of a new branch of mathematics called analytic number theory,

in which problems pertaining only to the integers were attacked by

Pafnuty Lvovich Chebyshev
(1821-1894) was
fascinated by mechanical
toys as a boy. His quest to
understand machinery led
to an interest in geometry
and ultimately to the rest
of mathematics. He
returned to mechanical
problems time and again
throughout his career,
attempting to construct a
machine that would draw
a straight line when a
crank was turned.
Although Chebyshev failed
to solve this problem (a
student of his eventually
did), in the attempt he
invented the polynomials

that bear his name.

proved Legendre’s conjecture. Inspired by Euler’s proof of the infinitude of primes, Dirichlet used an
ingenious argument to show that the sum of the reciprocals of all the primes in the progression &7z + A
diverges, which implies that there are infinitely many primes in the progression. This result is now
known as Dirichlet’s theorem of the infinitude of primes in arithmetic progressions.

Dirichlet’s proof was an incredible accomplishment. It marked the birth of a new branch of mathemat-
ics called analytic number theory, in which problems pertaining only to the integers were attacked by
going outside the realm of integers. By using concepts that depend on functions of a continuous variable,
Dirichlet brought the methods of calculus to bear on problems concerning integers, and changed the way
that everyone approached the prime number theorem thereafter. The ideas introduced in Dirichlet’s paper
laid the groundwork not only for analytic number theory, but also for algebraic number theory, in which
the methods of abstract algebra are used to study
the properties of the integers.

But the first real step toward a proof of the
prime number theorem itself was made in 1848
by the Russian mathematician, Pafnuty Lvovich
Chebyshev. He proved that if the ratio
m(x)(log x)/x has a limit as x goes to infinity, then
this limit must equal 1. However, Chebyshev was
unable to prove that this ratio actually tends to a
limit. Then, in 1850, he proved that this ratio lies
between 0.89 and 1.11 for all sufficiently large x. So, although he still couldn’t make the ratio converge,
as it were, he established that the ratio x/log x does, indeed, represent the true order of magnitude of n(x).

Chebyshev also introduced two new functions that are somewhat easier to deal with than m(x), and that
became the focus of nearly all subsequent work on the prime number theorem. One of these functions,
denoted by &x), is defined to be the sum of the logarithms of all the primes not exceeding x. The other
function, denoted by w(x), is the sum ¥(x) = 6(x) -+ 0(x?) + 0(x7) + .-+ + O(x#), where  is the smallest
positive integer for which x is less than 2”. Chebyshev then showed that proving the prime number
theorem is equivalent to proving that one of the ratios &x)/x or Y(x)/x approaches the limit 1 as x goes to
infinicy. When the prime number theorem was eventually proved in 1896, the argument was based
on Chebyshev’s functions.

A German named Georg Friedrich Bernhard Riemann made the next significant step in 1859, in a
famous 8-page paper—the only one he wrote on number theory—that was remarkable for its brevity
and for che wealth of its ideas. He attacked the problem with a new method, inspired by a discovery
that Euler had made in 1732.

When Euler proved Euclid’s theorem on the infinitude of primes by showing that the sum of the
reciprocals of all the primes diverges, his argument was based on a formula he discovered that relates
the prime numbers and the sum of the sth powers of the reciprocals of all the positive integers

It marked che

going outside the realm of integers.

(The embellishments above and below the summartion symbol % tell us to add up all the terms of the
form 1/# as » goes from 1 to infinity.) Every beginning calculus student learns about this series while
studying convergence tests. The series has a finite sum (converges) if the exponent s is greater than 1.
For example, when s = 2, Euler discovered the striking result that the sum of the series is n*/6:

=
6

™8
3=

3
il

where 7 is that famous number from geometry, 3.14159..., the ratio of the circumference of any circle to
its diameter. He also showed that if the squares are replaced by fourth powers the result is n%/90, and if
they are replaced by sixth powers the result is n/945. However, if s is less than or equal to 1, the series
has no finite sum—irt diverges. Euler discovered that for s greater than 1 this series could also be ex-

pressed as an infinite product extended over all the primes. This relation is usually written as follows:

m1 ”
ZF:].;II,TE{-

n=1
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Right: The complex-number
plane maps all numbers of
the form o + ti. The
integers lie on the ¢ axis;
pure imaginary numbers
lie on the ti axis. The
trivial zeros of the
Riemann zeta function are
plotted; the non-trivial
zeros lie somewhere in the
critical strip, which is

shown in yellow.

Georg Friedrich Bernhard
Riemann (1826-1866)
studied under Dirichlet,
and upon his death
succeeded him in the
professorship that had
once been Gauss’s. He
died of tuberculosis at age
39 while in Italy, on one of
several trips he took to
escape northern Germany’s
cold and damp. He
borrowed a leaf from
Pierre de Fermat when he
wrote that the Riemann
hypothesis “follow[s] from
an expression for the
function {(s) which | have
not yet simplified enough
to publish.” Whether
Riemann’s hypothesis will
require 357 years of effort
to be settled, as Fermat’s
last theorem did, remains

to be seen.
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The infinite product symbol means that we are to multiply factors of this type for every prime p. For
example, taking s = 2, we obrain a remarkable formula for expressing n%/6 as an infinite product involving
all the prime numbers:

52

A B

Euler’s infinite product with the general exponent s is the analytic equivalent of the fundamental
theorem of arithmetic, which, you recall, said that a positive integer can be divided into prime factors in
one and only one way. The series on the left contains powers of all the positive integers, but the product
on the right contains only powers of primes. Euler’s product identity forms the basis for nearly all
subsequent work on the distribution of primes.

Riemann suspected that Euler’s product identity might hold the key to the proof of the prime number
theorem, because the product on the right involves only primes. Riemann’s main contribution was to
replace the exponent s, which had heretofore always been a real number greater than 1, wich a complex
exponent that he also called 5. Riemann used the notation s = 6 + #, where 6 and ¢ are real numbers,
and 7 is the square root of —1. (Why Riemann mixed a Greek ¢ with a Roman 7 is unclear—he may
have intended that it be a 1, but the printer set it as 7, and # it has remained. And now, of course, it
is enshrined in mathematical cradition.) Riemann then showed that the distribution of prime numbers
is connected with properties of the funcrion {(s), defined by the infinice series

00

(=3 L.
n=1

Because he did so much wich the function {(s) it is now called the Riemann zeta function.

Riemann showed that the definition of the zeta function, originally valid only for o greater than 1,
could be extended (using integral calculus) to all complex values of 5, and that the prime number theorem
is intimately related to the location of the zeros of the zeta function, that is, those points in the complex
plane for which £(s) = 0. These zeros are of two categories, called trivial and nontrivial. The trivial zeros
are the negative even integers, that is, the points s = =2, —4, —6, ... along the negative real axis. The
exact location of the nontrivial zeros is not known, excepr that cthey lie in an infinite strip of width 1
(called the critical scrip) in which o lies between 0 and 1. The critical strip is the region in the complex
s plane thar lies berween the two vertical lines where 6 = 0 and ¢ = 1, as shown above.

Riemann laid out an ingenious, highly creative plan for proving the prime number theorem. He
showed that the prime number theorem would follow logically if one could prove that there were no zeros
of the zeta function on the line where ¢ = 1. Unfortunately, despite his best efforts, Riemann could not
carry out this crucial step in the plan. (He also conjectured a stronger statement—rthar all the nontrivial
zeros were located on the critical strip’s center line, now called the critical line, where 6 = '/,. This
conjecture, called the Riemann hypothesis, is unproved to this day, and is considered to be the most
famous unsolved problem in modern mathematics. If true, it has profound implications concerning
the error made when n(x) is approximared by x/log x.)

Riemann, generally considered to be the intellectual successor of Gauss, came close to proving the
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“I have discovered a truly remarkable proof, which this margin is too

small to contain.”

Unforctunacely, this truly remarkable proof—if

indeed he had one—died with him, as he never wrote it down on
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and helped clear his name.
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the city.

anything wider.

prime number theorem, but did not succeed. Not enough was known during Riemann'’s lifetime about
funetions of a complex variable to carry out his ideas successfully. After his death, many mathematicians
went to work to develop the tools needed to execute his plan. As a consequence of this research, French
mathemarician Jacques Salomon Hadamard developed in 1893 an important branch of mathematics—the
theory of entire functions of finite order—rto handle certain classes of previously intracrable functions that
had bested Riemann. (These functions have since taken on a life of their own in mathemarical analysis.)
In 1894, Hans Carl Friedrich von Mangoldt used Hadamard's ctheory to justify and simplify some of the
steps in Riemann’s method.

By 1896 the necessary analytic tools were in hand. Working independently and almost simultaneously,
Hadamard and Belgian Charles-Jean de la Vallée Poussin succeeded in proving the prime number theorem
by following Riemann’s strategy. In face, de la Vallée Poussin published three papers on the subject that
year—the first contains his proof of the prime number theorem, the second extends his method to obtain
a prime number theorem for arichmetic progressions, and che third is on special types of primes.

Hadamard and de la Vallée Poussin each used a differenc method to prove that the zeta function has no
zeros on the line 6 = 1, the step upon which Riemann had foundered nearly 40 years earlier. Of the two
proofs, Hadamard’s is the simpler. In a two-page note at the end of his third paper, de la Vallée Poussin
acknowledged this, and then showed how Hadamard’s method could be simplified even furcher. In just
a few lines de la Vallée Poussin showed that the lack of zeros on the line o = 1 followed quite easily from
an elementary trigonometric idenriry for the cosine of a double angle:

cos 20 =2 cos*8 — 1,

He then pointed out that this trigonomerric identity can be used to shorten his original proof in the first
paper by 24 pages, and that the same identity can be used to simplify the second and third papers as well.
These first proofs were later simplified by many other mathematicians, and new proofs discovered, all

using sophisticated methods of calculus and complex analysis. Then, in 1949, Atle Selberg, at the
Institute for Advanced Study in Princeton, and Paul Erdgs, an itinerant Hungarian mathematician
(who died on September 20 of this year, aged 83, while attending a conference in Warsaw), astounded
the mathematical world by presenting a proof that makes no use of the Riemann zeta function or com-
plex-function theory. Bur this so-called elementary proof is very intricate, and is more difficult to
understand than the analytic proofs.

The prime number theorem is important, not only because it makes a fundamental, elegant statement
about primes and has many applications within and beyond mathematics, burt also because much new
mathematics was created in che attempts to find a proof. This is typical in number ctheory. Some prob-
lems, very simple to state, are often extremely difficule to solve, and mathematicians working on these
problems often create new areas of mathematics of independent interest. Anocher such example is
Fermat's last theorem, which asserts that there are no positive integers x, y, 2, and # satisfying the equation

X"+ y" = 2" if n is greater than or equal to 3.

In 1637, Pierre de Fermar jotted that equation in the margin of his copy of Diophantus's Arithmetica,
along with the note, “I have discovered a truly remarkable proof, which this margin is too small to
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contain.” Unfortunately, this truly remarkable proof—if indeed he had one—
died with him, as he never wrote it down on anything wider. The theorem
was proved only recently—in 1994!—by Andrew Wiles of Princeton Univer-
sity. The proof of Fermat’s last theorem has received more publicity than any
other result in mathematics, but Gauss himself considered Fermat's lasc
theorem to be of only minor importance and refused to work on it.

The prime number theorem and Fermat's last theorem are two outstanding
examples of problems that have attracted che intellectual curiosity of many
individuals but resisted efforts at solution. Repeated failure by eminent
mathematicians to settle these problems by known procedures stimulates the
invention of new methods, approaches, and ideas that, in time, become part
of the mainstream of machematics, and even change the way mathematicians
think abour their subject. This is certainly true of the prime number theo-
rem. Early attempts to prove it stimulated the development of che theory of
functions of a complex variable—a branch of mathemartics that is the lifeblood
of mathematical analysis. And efforts to prove Fermat's last theorem led to
the development of algebraic number theory—one of the most active areas
of modern machemartical research, wich ramifications far beyond the Fermat
equation. One unexpected application of algebraic number theory is in
designing security systems for computers.

There are hundreds of unsolved problems in number theory alone. New
problems arise more rapidly than the old ones are solved, and many of the
old ones have remained unsolved for centuries. Our knowledge of numbers is
advanced, not only by what we already know about them, burt also by realizing
thart there is much that we do »ef know about them. Here are a few of the
great unsolved problems from the realm of prime numbers:

e[s chere an even number greater than 2 chat cannot be written as
the sum of two primes? (Goldbach’s problem.)
els there an even number greater than 2 that cannot be written as
the difference of two primes?
e Are there infinitely many twin primes?
e Are there infinitely many primes of the form 27- 1,
where p is prime?
* Are there infinitely many primes of the form 27" + 17
¢ Are there infinitely many primes of the form x% + 1,
where x is an integer?
e]s there always a prime between »” and (» + 1)’ for
every positive integer n?
oI5 there always a prime between »” and »” + » for
every integer » greater than 1?7
Solve any of the above, and your name, too, shall live forever in the math-
ematical hall of fame!

Professor of Mathematics, Emeritus, Tom M. Apostol
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sity of Washington in 1944, and his MS in mathemat-
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an associate professor in 19506, a full professor in 1962,
and emeritus in 1992. His two-volume calculus text-
book, written nearly 40 years ago and known to genera-
tions of Caltech undergrads as “Tommy 1" and “Tommy
2,7 is stall used to teach freshman math. Apostol bas
kept up wirh the times, going electronic in the 1980s
as part of the team that created The Mechanical
Universe... and Beyond, @ 52-episode college-level
physics telecowrse. Apostol is currently creator, director,
and producer of Project MATHEMATICS!, « series of
computer-animated videotapes explaining math concepts.
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