
A lunging fly looks angry, but the “emotion” is a hard-wired reflex. 
Now a computer-vision system that watches flies and can figure 
out what they’re doing is helping biologists trace those wires—
and might one day be able to read human emotions.
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How deep does emotion go? When fear 
trumps reason, pop psychologists tell us it’s 
the older, reptilian part of our brain tak-
ing over. But what brain circuits are really 
responsible, and how are they wired up? 
To answer this very big question, a Caltech 
neurobiologist, a computer scientist, and a 
bioengineer have started very small—with 
Drosophila melanogaster, otherwise known 
as the common fruit fly. 

The fly’s tiny brain contains only about 
40,000 nerve cells—not counting the optic 
lobes, which include another 60,000 or 
so—and, to a first approximation, is more or 
less hardwired, says biologist David Ander-
son. “We do not have anything close to a 
complete wiring diagram, but when you look 
at the major branches in a neuron’s dendritic 
tree and where those branches go, they 
seem to be remarkably constant from one 
fly to another.” So, like a person in a strange 
house flipping the switches in the front hall 
to find out where the lights are, Anderson is 
turning specific nerve cells on and off to see 
what happens. 

The seeds of Anderson’s work were 
planted at Caltech in the 1960s. While 
researchers elsewhere were teaching mice 
to run mazes, biologist Seymour Benzer 
began mutating flies to induce behavioral 
oddities—establishing what has become 
a very fertile field. As flies have a genera-
tion time of only 12 days (versus some nine 
weeks for mice), the experiments proceeded 
at a gratifying pace, and his lab discovered 
a host of genes responsible for controlling 
such things as how flies responded to light, 
when they slept, and whether they mated. 
Although Benzer formally retired in 1992, 
he continued working right up to his death 
in 2007. 

When Anderson got interested in the 
neural-circuitry problem about a decade 
ago, he intended to study mice, and he and 
biologist Henry Lester began developing 
a set of techniques to turn mouse neurons 
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Anderson’s grad student 

Liming Wang stocks an 

arena—the tall rectangular 

container underneath the 

leftmost camcorder—with a 

pair of flies from one of the 

vials at right. A fluorescent 

lightbox illuminates the 

arena floor from below, 

creating a clean, uniform 

background that makes it 

easier for the computer to 

find the flies. He is ferrying 

the flies with an aspirator, 

which is basically a length 

of surgical tubing with a 

plastic tip. 

on and off. “But I had always had fly envy,” 
Anderson says. “I spent a lot of time talking 
with Seymour about whether one could 
study primitive versions of emotion-like 
behaviors, like fear, in flies. And there are a 
lot of fancy genetic manipulations that you 
can do in flies that you can’t do so easily in 
mice.” Around 2005, “after spending three 
or four years really struggling to get the 
mouse system under way, we decided to 
initiate a program with flies. So the reason 
I started with them—in addition to sheer 
impatience—is the potential to screen thou-
sands of lines of genetically altered flies to 
look for behavioral changes.” 

Fear and Aggression in Pasadena
Anderson also eventually switched his fo-

cus from fear to aggression. “When people 
see videos of flies fighting, they don’t have 
to be convinced that this is analogous to an 
emotional behavior in humans. It’s harder 
to show that a fly is afraid of something. 
There’s a quote from Charles Darwin’s 1872 
book, The Expression of the Emotions in 
Man and Animals, that I love: ‘Even insects 
express anger, terror, jealousy, and love by 
their stridulation.’ Now, this doesn’t mean 
that I think that flies get angry when they 
fight, or feel anything like anger. When we 
talk about ‘emotional behavior’ in animals, 
we’re talking about an observable motor 
behavior, not a subjective state that might 
accompany such behavior.”

These subjective states, however, are very 
much on the mind of machine-vision expert 
Pietro Perona. Since the mid-1990s, Perona 

has been trying to figure out how to teach 
computers to look at people, read their emo-
tions, and divine their intentions—something 
humans do instinctively. (See “The Machine 
Stares Back,” E&S 1999, Nos. 1/2.) Be-
sides leading to some truly awesome video 
games, such a system could be used by 
market researchers to find out what people 
really think of a product being pitched to 
them, or by security cameras to decide 
whether that nervous-looking fellow in the 
ATM queue is a potential armed robber. 

But when an action as simple as walking 
looks so different in front and side views, 
good luck trying to codify the distinction 
between a joyous strut and a furtive skulk. 
“How can I decompose human behavior into 
meaningful motions, which are its funda-
mental ingredients?” says Perona. “I realized 
at some point that I had to study behavior 
in a simpler setting, and David convinced 
me that flies have an enormous repertoire of 
interesting behaviors. Flies are very simple 
animals and their bodies are extremely easy 
to track. You can put a camera on them and 
watch them as they fight, as they court, as 
they mate, as they look for food.”

Anderson was also talking with Michael 
Dickinson, a zoologist-turned-engineer who 
had been deconstructing Drosophila’s flight-
control systems with an eye toward design-
ing free-flying microrobots. (See “Come Fly 
with Me,” E&S 2003, No. 3.) A fly can flap 
its wings 250 times per second, and it can 
change its course by 90 degrees in 50 mil-
liseconds, so Dickinson’s lab was shooting 
high-speed videos of individual flies on the 
wing. A computer processed these videos 

to reconstruct each wing’s motions in three 
dimensions, but only after a live human had 
gone through the footage, one frame at 
a time, to trace the outlines of the wings’ 
silhouettes. But Dickinson’s interests were 
shifting from the fluid dynamics of flies in 
midair to the group dynamics of flies in large 
numbers, which would mean tracing dozens 
of flies at once. 

Both Anderson and Dickinson envisioned 
the same strategy: put some flies in an 
“arena”—a rather grandiose term for an 
enclosure that might range in size from a 
postage stamp to a dinner plate—mount a 
small camcorder overhead, like the Good-
year blimp looking down on the 50-yard 
line at the Rose Bowl, and ask a computer 
to report on what the flies are doing. The 
computer, working tirelessly, would analyze 
thousands and thousands of hours of video 
to create vast databases of fly behavior that 
could be mined statistically.

But the two sets of software specs that 
resulted were nearly polar opposites. Ander-
son needed to watch pairs of flies in close 
quarters and catalog each occurrence of 
any of an assortment of predefined aggres-
sive or courting actions—Perona’s “mean-
ingful motions,” which, when performed in 
various sequences, add up to the complex 
behaviors we put names to. Dickinson 
wanted to follow 50 individual flies out in 
the open simultaneously, keeping each fly’s 
identity straight while mapping its path. 
His software needed to classify the fly’s 
movements into a few broad categories—
Was it walking forward? Backing up?—but 
the main purpose was to reveal patterns of 
social interaction.  

EYES ON THE FLIES
Back in 2005, the state of the art in be-

havior tracking owed more to the sweatshop 
than the supercomputer—grad students and 
postdocs watching endless hours of grainy 
video and making tick marks on pieces of 
paper whenever fly X lunged at fly Y. Each 
video was only 20 minutes long, but if you 
factored in all the scrolling back and forth 
to mark the exact frame where every lunge 
began and ended, then completely catalog-
ing just the lunges could take well over an 
hour. If you also wanted to count the chases, 
or the touches, you had to go back and 
rewatch the entire video all over again.

Not only is this mind-numbingly boring, 
it’s error-prone. Besides the obvious ways 
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What Is “Behavior,” anyway?
Perona’s ultimate goal is to build a computer 
that interacts with us the way we do. “We 
look at each other, and I know you’re sitting 
comfortably and I know you’re paying atten-
tion to me, taking notes,” he explains. “That’s 
very useful for me and I would like a machine 
to be able to do the same.” Perona picks up 
all this information intuitively, with a glance 
at body language and facial expression, but a 
computer needs things to be spelled out for 
it. Figuring out what we need to tell the com-
puter brings up a very basic question—what 
do we mean by “behavior” in the first place? 

It turns out that we mean many things, as 
the chart at right shows. We tend to think 
in terms of long-term behavior, which we 
describe at a very high level. “That man is out 
to pick a fight,” a pool-hall bouncer might say. 
But this abstraction is based on observing concrete activity—the 
belligerent fellow has been getting drunk for the past hour, and 
is now sliding off his bar stool and heading for the biggest dude 
in the room. Activity, in turn, is a collection of individual actions 
that might take a minute or less each—chugging a beer, for 
example. And at the very lowest level, an action can be broken 
down into a sequence of movements—reaching for the mug, 
gripping the handle, rasing the brim to the lips, tilting back the 
head and arm, and slamming the empty down on the bar. 

These are the “meaningful motions” Perona is looking for, 
which he calls “movemes” by analogy to the phonemes that 
are the fundamental sounds of speech. A lisped “s” is still an 
“s,” and someone speaking English with a German accent may 
inject a little extra phlegm into the “ch” sound, but the meaning 
is still clear. Similarly, a reach in any direction is still a reach, 
even if it’s a sloppily executed one that winds up spilling half 
the mug.

In other words, movemes are the building blocks of behavior 
that can be described in such a way that they make sense to 
a computer, when all the machine has to go on is a video feed 
that it can examine frame by frame to see if any of the pixels 
have changed. 

This brings us to the chart’s horizontal axis—seeing a 
behavior takes various amounts of pixels, as well as different 
lengths of time. Some movemes will be obvious even at very 

low resolutions. “If you punch somebody,” says Perona, “I may 
see that even if your whole body only appears in 10 pixels. You 
could be very far away, just a ghost in the distance. But if you 
wink at me from across the room, I may need to put a thousand 
pixels on your body to be able to see that eye motion. So there 
are multiple scales of resolution in time and space that are 
meaningful to us.” 

Substituting fruit flies for humans has allowed Perona to 
explore this notion of movemes using a creature with a much 
smaller vocabulary of gestures. “We have made quite a bit of 
progress in understanding how to think about these problems,” 
he says. “What is the signal that is there in images? How do you 
harvest it? And how do you decide if something is happening?” 

When these problems are eventually solved, Perona says, we 
could wire up “smart homes” for the elderly who live alone, 
where a computer automatically calls 911 if you’ve fallen and 
you can’t get up, or summons your doctor if you look a little 
green. Factory floors and construction sites could be made 
safer, since “every move of every worker could be followed and 
evaluated for risk, and the worker could be briefed at the end of 
the day on better safety practices.” And, of course, there’d be 
the killer iPhone apps. “Your cell phone might one day be able 
to tell you what’s wrong with your golf swing, and maybe give 
you tips on your tennis backhand as well.” —DS 



CADABRA: MAKE LOVE, OR WAR
The behaviors that CADABRA automati-

cally recognizes include three that are ex-
plicitly aggressive: the “tussle,” in which flies 
sumo-wrestle by facing each other, gripping 
one another with their forelegs, and strug-
gling to displace their opponent; the “lunge,” 
in which one fly rises up on its hind legs and 
pounces on its opponent; and the “wing 
threat,” in which both wings are extended 
perpendicular to the body and then tilted 
up about 45 degrees, presumably to make 
the fly appear bigger and more intimidating. 
Three others are courtship-related: “circling,” 
in which the male fly walks sideways around 
the object of his desire, facing head-in; 
“wing extension,” in which our suitor woos 
his intended by vibrating an outstretched 
wing in a courtship song; and “copulation,” 
over which we shall draw a discreet curtain. 
The final one, “chasing,” can lead to either 
sex or violence, depending on the circum-
stances. 

CADABRA scrolls through the video 
frame by frame, locating and identifying each 
fly. (Females are bigger than males, making 
it easy to keep straight who’s who; when 
male flies are paired up, one of them gets a 
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to miss something—an ill-timed sneeze, a 
ringing phone, or simply zoning out for a few 
minutes—behavior can be in the eye of the 
beholder. Says Perona, “How long does one 
fly have to follow the other for it to count 
as ‘following’? At what distance should 
they be? How fast should they be going? If 
somebody in Norway made an observation, 
and I am trying to reproduce it here, how 
do I know that I’m observing the flies in the 
same way?” 

“I had two biologists labeling my frames,” 
remarks Perona postdoc Piotr Dollar, “and 
they only agreed on about 72 percent of 
them. And when I had the same person 
relabel some of them two months later, there 
was only about 80 percent agreement” with 
that person’s previous set of observations. 
It wasn’t merely a matter of changing one’s 
mind on where an action started or stopped, 
either—“entire behaviors would be missing.” 

Since computational techniques for iden-
tifying dark objects on a bright background 
(or vice versa) are well established, as are 
methods for following those objects from 
one frame of a video to the next, Perona 
figured it might take about three weeks to 
write Anderson’s and Dickinson’s software. 
In fact, the first draft of each package took 
more than a year. Finding the flies and keep-
ing track of them was the easy part; “the big 
difficulty was keeping the flies distinct when 
they were bumping into each other and 
overlapping,” says Perona. It also proved 
harder than expected to make systems that 
would run reliably in the hands of people 
who were not computer scientists. 

The first step was bringing the video- 
labeling process into the electronic age, 
with a captioning package not unlike the 
video-editing software you might have on 
your PC. “There was a commercial sys-
tem available, but it wasn’t terribly good,” 
says Perona. “So we had to write one from 
scratch.” As a fly movie plays in one window, 
another window displays a separate time 

track for each insect. Clicking on the time 
track allows you to mark the frame where, 
for example, the fly begins its lunge. “We 
would play the video at one-tenth speed, 
freeze it, click on a fly, and then choose a 
behavior from a dropdown menu,” says Li
ming Wang, a grad student of Anderson’s. 

Hundreds of hours of meticulously an-
notated video would be fed to the computer, 
which could then teach itself what a lunge 
looked like by scanning the database, 
watching all the segments marked “lunge,” 
and extracting some set of parameters com-
mon to all the examples. Once the computer 
had processed this “training set,” the re-
searchers would give it a fresh set of videos, 
the test set, for it to label on its own. Of 
course, the humans had to check its work, 
which meant that all of the test set’s videos 
had to be labeled by hand as well. And then 
the process would repeat. Endlessly.

It took about three years of machine 
learning to get ready for prime time, but the 
finished products debuted last spring. Both 
software packages can be downloaded for 
free, and they are now in widespread use. 
The one for watching pairs of flies—the 
cage matches, if you will—is called CA-
DABRA, for Caltech Automated Drosophila 
Aggression-Courtship Behavioral Recog-
nition Algorithm. It was created by Heiko 
Dankert, a postdoc working with Perona and 
Anderson; Wang; and Anderson postdoc 
Eric Hoopfer. The other, which records and 
displays the meandering paths of large 
groups of flies in an open field, is named 
Ctrax—pronounced “See-tracks,” get it? It 
was developed independently by postdoc 
Kristin Branson, working with Perona and 
Dickinson, and Dickinson’s grad students 
Alice Robie (PhD ’10) and John Bender 
(PhD ’07). CADABRA and Ctrax were 
published in the April and June 2009 issues 
of Nature Methods, respectively. (Dickinson 
has since joined the faculty of the University 
of Washington in Seattle.) 

Right: Top and side views of three things CADABRA 

is programmed to recognize. Going from left to right, 

we see a lunge, a tussle, and a wing threat. 

Below right: The computer extracts the fly’s image 

from the background pixels, then fits an oval around 

the fly’s body.

Bottom right: Some of the parameters CADABRA cal-

culates for every encounter between a pair of flies.

The scale bars are one millimeter long.

All figures from Dankert, et al., Nature Methods 6: 4 (2009)  

© Macmillan Publishers Ltd.
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Figuring out which way the fly is facing provides critical 
information, as butting heads and bumping butts are likely to 
lead to very different outcomes.

drop of white paint on his back.) Then the 
software analyzes each fly’s pose—creating 
a mathematical representation of its body 
language. The process begins by breaking 
each fly down into three ovals: one for the 
body and one for each wing. The wings are 
a different shade than the body, and thus 
easily distinguishable. Figuring out which 
way the fly is facing provides critical infor-
mation, as butting heads and bumping butts 
are likely to lead to very different outcomes. 
Fortunately, fly heads are quite shiny due to 
their reflective, waxy cuticle, so the com-
puter divides the body oval in two and labels 
the brighter half the head. Then the system 
calculates a set of 25 parameters, starting 
with the fly’s position, velocity, and direction 
of travel and going into such details as the 
body’s apparent length, its angle of orien-
tation (which is not necessarily the same 
direction it is moving), and the angles of the 
wings to the body. 

“Heiko, Pietro, and I watched a whole 
bunch of movies and made a big list of what 
parameters the system needed to look for,” 
says Wang. “In a lunge, for example, when 
the fly rears up to strike, it gets smaller 
as seen from above. When it lunges, the 
head suddenly accelerates. And before 
it lunges, it often stops, to sort of gather 
itself. It follows its opponent, then pauses, 
then lunges.” It usually took 10 to 15 of the 
25 parameters to describe each behavior, 
Wang says. If the action was simple enough, 
the biologists could even define it explic-
itly—for example, in a wing extension, the 
wing had to be outstretched between 60 
and 90 degrees from the body for at least 
one second. This precision was alluring, but 
the more complex activities eluded such 
easy encapsulation. All the biologists could 
do then was label the videos and leave the 
machine to figure things out for itself.

CADABRA’s analytical power comes from 

its ability to compile videos into “stacks” that 
can be compared to other stacks. A stack 
could be a “heat map” that shows where 
something tended to happen; for example, 
fights were most likely to break out at a food 
source placed in the center of the arena, 
causing that area to glow red. Behavioral 
differences started to pop out immediately. 
Males from a strain of flies called Cha-Tra, 
whose brains have been “feminized” by 
messing with the genes that control mas-
culine development, spent an awful lot of 
time chasing each other around the arena’s 
periphery. Pairs of unmutated, or “wild-type,” 
males were more venturesome, and were as 
likely to chase each other out in the middle 
of the arena as they were to hug the walls. 
Timelines can be stacked just as easily. 
“Flies fight a lot in the first 10 minutes,” 
Wang says. “After that, they seem to get to 
know each other. Or they get bored. We 
don’t know.” 

Top: A trio of CADABRA heat maps. The hot-

ter the color, the more time pairs of flies in 

that location spent chasing each other. CS 

(for Canton-S) flies are a standard strain of 

unmutated flies. They went their own way most 

of the time, but their few chases were fairly 

evenly distributed throughout the arena. Pairs 

of Cha-Tra males were much more likely to 

chase each other along an arena wall. 

Bottom: CADABRA ethograms for the same 

pairs of flies. The size of each circle, and the 

number in it, reflects how often each action 

occurred. The relative widths of the connecting 

arrows show what was most likely to happen 

next. (In order to qualify as related, the two 

actions had to be separated by 10 seconds or 

less.) The stubs show the probability of the 

same action being repeated: thus, if a Cha-Tra 

fly lunged, it was likely to lunge again. 

Twenty pairs of CS males, 24 male-female 

pairs, and 10 pairs of Cha-Tra males were 

recorded in this set of videos.

D
an

ke
rt

, e
t a

l.,
 N

at
ur

e 
M

et
ho

ds
 6

: 4
 (2

00
9)

 ©
 M

ac
m

ill
an

 P
ub

lis
he

rs
 L

td
.

http://www.nature.com/nmeth/journal/v6/n4/abs/nmeth.1310.html


Five seconds’ worth of Ctrax data—100 

frames of video—for 50 wild-type 

female flies. Each fly is marked by 

a tiny triangle that draws a line 

showing where it’s been.
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CTRAX: FACES IN THE 
CROWD

Ctrax, created for the 
Dickinson lab, monitors 
groups of flies wandering 
as the whim takes them in 

an arena 10 inches in diam-
eter—scaled to the length of 

a fly’s body, that’s about a mile 
across. This vast landscape can 

be left empty, or it can be strewn 
with tasty tidbits at which to gather (or 

fight), obstacles to explore or navigate 
around, pinnacles to climb, or anything else 
the researchers can come up with. “It is 
a bit of a fishing expedition,” Perona says. 
“If the machine can look at kilometers of 
footage and detect some regularities, it may 
be able to formulate a hypothesis that a 
biologist hadn’t yet made.” And there may be 
behaviors that are so rare humans might not 
see them, or that take so long to play out we 
would not realize that they are happening. 

Postdoc Kristin Branson faced an enor-
mous challenge when writing Ctrax. How 
could she keep each fly’s identity straight 

without having to attach a physical marker 
to the insect, as the best commercially avail-
able package did? Other systems that didn’t 
use markers were prone to confusion when 
the flies got close together, and would often 
misassign their IDs when they parted ways 
again. Ctrax minimizes identity theft through 
frame-by-frame comparisons. It first looks at 
each frame in isolation and tries to locate all 
the flies it can by using what Perona post-
doc Michael Maire calls a “blob detector.” 
Then, working on the assumption that each 
fly won’t have moved much, it compares 
consecutive frames to see whether a blob 
appears in roughly the same spot and is 
moving in a smooth path. If the blob is too 

big, the computer subdivides it by fitting 
fly-sized ellipses to contiguous groups of 
pixels. (Even if the flies are climbing over 
one another, there’s usually a gap of a few 
pixels’ width between some portion of their 
overlapping silhouettes.) 

Backtracking along each ellipse’s path 
tells Ctrax which end of each blob to call the 
head—flies are more likely to be walking for-
ward than backward. Flies don’t usually en-
ter or leave the arena, so if a track suddenly 
vanishes during the rewind, the computer 
looks around for other tracks. If a nearby 
track dead-ends, for example, perhaps it 
and the vanishing track should be spliced 
together. Or perhaps a track forks, and the 
vanished track can supply the missing leg. 
The system can get stumped if, for example, 
a fly rears up and appears foreshortened, or 
makes an abrupt move in a radically different 
direction. Ctrax then calls for help, asking a 
human to look at the video and fix things by 
hand. “This happens once every fly-hour or 
so,” says Perona. 

Once the processing is complete, Ctrax 
displays each fly as a thin triangle—the 
pointy end being the head—trailing a 
colored line that traces its path. The line 
usually just shows the last little bit of the fly’s 
history; otherwise, the arena quickly fills with 
a rainbow of scribbles resembling the work 
of a bored five-year-old with a fresh box of 
Crayolas. 

Dickinson’s lab trained Ctrax to recognize 
walking, stopping, turning sharply, backing 
up, jumping, chasing, touching, and crab-
walking, in which the flies move sideways. 
Then they gave the system a workout, using 
17 groups of 20 flies each: all-male contin-
gents; all-female ones; 50-50 mixes; and 
batches of male flies with the fru mutation, 
which controls male courtship and mating. 
By creating an ethogram for each individual 
fly, Ctrax could automatically determine its 
gender (and, in the case of the fru flies, its 
phenotype) with better than 95 percent ac-
curacy. Male flies proved to have little sense 
of personal space, routinely approaching 
other flies of either sex until little more than a 
body length separated them. Females were 
more retiring, preferring to keep at least two 
body lengths between themselves and oth-
ers. And fru flies were far more likely to back 
away from an encounter than were wild-type 
males. 

Each wild-type fly displayed its own self-
consistent neural programming. Some flies 
kept close to the walls, while others ven-
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Most importantly, CADABRA can create 
the behavioral equivalent of a traffic-pattern 
diagram. Called an ethogram, it maps how 
actions flow into one another. For example, 
when wild-type males were paired up, a 
chase was usually followed by a hostile 
lunge. But put two Cha-Tra males together, 
and they were as likely to become lovers as 
fighters, with a chase leading to an amorous 
advance in the form of a wing extension as 
often as it did to a lunge. Such analyses 
might reveal whether aggression and court-
ship are at opposite ends of one continuum, 

controlled by a dimmer switch—the level 
of one or two critical proteins, perhaps—or 
whether they’re really two different states of 
mind, if flies can be said to have minds, con-
trolled by two independent neural circuits. 

With CADABRA up and running, the 
Anderson lab has shifted into high gear, 
screening 100 different strains of flies per 
week, and recording a dozen pairs of flies 
per strain. Fully annotating seven actions 
per video would have soaked up more than 
80 person-hours per strain—two entire 
work weeks for some poor grad student. 
CADABRA does the entire analysis in a few 
minutes.

The arena quickly fills with a rainbow of scribbles 
resembling the work of a bored five-year-old with a 
fresh box of Crayolas.

http://www.nature.com/nmeth/journal/v6/n6/abs/nmeth.1328.html
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tured out into the center more often. Each fly 
had a preferred walking speed—the zippiest 
striding twice as fast as the pokiest—and a 
favorite duration for its strolls. Even the per-
centage of time a fly spent moving around 
versus standing still was an individual trait. 

Ctrax’s ultimate validation came when it 
flagged large numbers of track segments 
that defied classification. When the humans 
reviewed them, several new behavior types 
were identified: T-stops, X-stops, jousts, 
drag races, and even games of chicken. 

FROM SLEDGEHAMMERS  
TO THERMOSTATS

Seymour Benzer’s groundbreaking work 
back in the 1960s had used a sledgeham-
mer approach, zapping the flies with X rays 
or dosing them with chemicals to induce 
wholesale mutations. The screening process 
was quick, thanks to ingenious methods his 
lab developed to collect the flies displaying 
some desired behavior. The time-consuming 
part of the job came afterward: inventory-
ing the mutations each fly carried and then 
trying to figure out which one actually made 
the difference. 

Nowadays, Anderson turns neurons on 
or off as easily as flicking a light switch—or, 
rather, adjusting a thermostat, thanks to a 
nifty piece of molecular biology developed 
at Brandeis University by Paul Garrity (PhD 
’93). The procedure exploits a temperature-
sensitive ion-channel protein called TrpA1, 
for Transient Receptor Protein A1, which is 
normally found in heat-sensing neurons that 
help the fly stay in its comfort zone. Flies 
like it a bit on the chilly side, so TrpA1’s ion 
channel stays squeezed tightly shut at 22°C, 
but unclenches at 27°C—the equivalent of 
taking the flies’ cage from an air-conditioned 
lab out into a nice summer afternoon. When 
the channel is closed, the neuron can’t fire. 
When the channel opens, the neuron goes 
off, telling the fly to start looking for a cooler 
place to hang out.

An extra copy of the TrpA1 gene can 
be inserted into a fly’s DNA globally and 
selectively activated in some specific set of 
neurons that are not normally heat-sensitive. 
The details are complicated, but depending 
on the type of neuron you choose, you can 
tweak a set containing only a few tens of 
cells. Other sets might have a few hundred, 
or perhaps a thousand neurons—still just a 

few percent of the fly’s nonvisual brain cells. 
The activated neurons proceed to sprout 

lots and lots of extra copies of the ion chan-
nel on their surfaces. At 22°C, the modified 
neurons go about their business as usual, 
firing at their normal rate whenever they’re 
supposed to fire. When the temperature 
rises to 27°C, they still fire whenever they’re 
supposed to fire. But because of all the 
extra ion channels, when they do fire, they 
just go nuts.  

Traditional aggression screens have 
focused on genes, not neurons. These 
studies “knock out,” or inactivate, a gene to 
see whether the resulting flies are less (or 
more) quarrelsome. But overactivating a 
neuron and looking for flies with hair-trigger 
tempers has its advantages. “There are a 
lot of uninteresting, low-level ways to break 
a complicated behavior,” says Anderson. “If 
the fly’s legs don’t work, they’re not going 
be aggressive. But if you can specifically 
enhance aggressive behavior, there’s much 
less likely to be a trivial or uninteresting 
explanation for it.” And if the flies mellow out 
when retested at room temperature, “it tells 
us the increased aggression really is due to 
activating this particular subset of neurons, 
and not because those flies just happened 
to have had a bad day and were in a bad 
mood and fought a lot.”

Studying neurons instead of genes has 
another benefit. If many genes are involved, 
which is likely, each one might make a small, 
subtle contribution. “But a neuron reflects 
the combined activities of whatever 12,000 
to 15,000 genes are turned on in that cell,” 
says Anderson. A pilot study of a couple 
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The colored boxes in this two-minute trace (a) of a male fly’s movements through a coed crowd 

show seven behaviors that Ctrax labeled. In a close-up look at those boxed portions of the track (b), 

the triangles mark the fly’s position in each frame. The blue and red triangles are the beginning and 

end points Ctrax assigned to the action; in the “walk” example, only the beginning point is shown. 

Gray triangles indicate the presence of a second fly. Plotting these actions against time (c) creates a 

visual summary of the fly’s activities.

http://www.bio.brandeis.edu/faculty/garrity.html
http://www.nature.com/nmeth/journal/v6/n6/abs/nmeth.1328.html


Overactivating a neuron and looking for flies with hair-trigger tempers has its 
advantages. “There are lots of uninteresting, low-level ways to break a complicated 
behavior,” says Anderson. “But if you can specifically enhance aggressive behavior, 
there’s much less likely to be a trivial or uninteresting explanation for it.”
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hundred strains of flies showed that in the 
few that were extra feisty, “the increase is 
very big and very dramatic—by an order of 
magnitude. You don’t need fancy statistics 
to see it.” 

Bigger studies are on the horizon. 
Anderson’s postdoc Eric Hoopfer is now 
at the Howard Hughes Medical Institute’s 
Janelia Farm Research Campus in Ashburn, 
Virginia, home to a collection of flies with 
overabundant TrpA1 channels in about 
4,000 different sets of neurons. Hoopfer 
has adapted CADABRA to run on Janelia’s 
supercomputer, and he plans to examine 
videos of every last one of those strains—
the most comprehensive aggression screen 
ever attempted. “We’re not making any 
assumptions about what part of the brain is 
involved in aggression,” says Anderson, “or 
what kind of neurons are involved in aggres-
sion. We just test as many lines as possible. 
If some neurons keep showing up over and 
over again, or maybe look like they might 
be connected to each other, we can use 
this information to try and piece the circuit 
together. This software has really enabled 
an approach that could not previously have 
been undertaken.”

OF MICE AND MEN
All through this past five years of fly work, 

Anderson never gave up on mice. “I like 
the idea of studying the same behavior in 
two evolutionarily very different species,” he 
says. “Despite their obvious differences in 
brain structure, are there are some general 
principles that underlie the organization of 
aggression circuitry?” 

We may be on the road to finding out. 
Perona postdoc Piotr Dollar is working on a 
generalized version of CADABRA that, alas, 
does not yet have a catchy acronym. Mice, 
being fluffy and flexible, are much harder 
for a computer to discern. They can curl up 
in a ball, or stretch out, or hunch over and 

scratch behind an ear. To make matters 
worse, this nearly infinite variety of “looks” 
has to be extracted from a textured back-
ground of wood shavings that registers in 
the same shades of gray. 

Dollar has tackled such problems before. 
He used to work on the Caltech Pedestrian 
Detector, a program intended for cameras 
that could, for example, be mounted on 
airport shuttle buses. Such a system would 
be intended to alert the driver that someone 
is about to step out from behind a parked 
car and into the crosswalk ahead, and so it 
would have to deal with partially obscured 
bodies and blotty backgrounds all the time. 

Says Perona, “Piotr figured out a very 
clever way, which is true progress in 
machine vision, for detecting the mouse.” 
Dollar’s system uses a collection of “weak” 
feature detectors, whose outputs are col-
lected to render a verdict, Perona explains, 
and “his detectors are designed around 
sophisticated visual measurements that 
nobody had managed to use in practice 
before. It turns out that his method extends 
to almost any animal, and you can train it 
very easily.” Says Dollar, “You just draw a 
little circle around the animal of interest in a 
few hundred frames, and then you also give 
the system a bunch of negative examples, 
which could be pictures of anything—you 
don’t care.”

Dollar is collaborating with Andrew 
Steele, a Broad Senior Research Fellow in 
Brain Circuitry, to test the system. “Get-
ting something to work robustly in different 
lab environments is what makes the thing 
click,” says Steele. “What separates a really 
great computer-vision person from some-
one who’s merely good is that they give you 
something you can actually use. Because a 
lot of these papers that people publish only 
work with one database. They tune their 
algorithm to work really well on one type of 
video, in one lighting situation. And then it’s 
not very useful for the end user like me.” 

Figuring out how to tell a mouse’s head 
from its tail is going to take a while, how-
ever, and training the system for behavior 
recognition is still very much a work in 
progress. Anderson estimates that his 
lab—including a bunch of undergraduates 
on work-study—has invested 1,500 person-
hours in annotating mouse videos. 

But the payoff will be enormous. Says 
Anderson, “There are projects going on 
around the world—at the Sanger Institute 
in England, and at other sites—to generate 
a complete library of mutant mice in which 
each mouse has one, and only one, of its 
20,000 genes inactivated. With a computer 
program analogous to CADABRA for mice, 
it would then be possible, in theory, to 
screen through all 20,000 mutants to see 
which ones have the biggest influence on 
aggressive behavior. And you would know 
in advance which gene was knocked out, 
which would be a huge advantage.” 

Brain function is as much about chemistry 
as circuitry, so Anderson’s lab is also 
exploring the effects of pheromones and 
other chemical messengers such as 
dopamine. He’s been doing this all along 
with the flies, but the mouse work could be 
adapted for what the biomed biz calls 
“translational science”—screening drugs to 
treat impulsive violence, for example. “We’re 
not equipped to do it,” Anderson says, “but 
it’s something that the pharmaceutical 
industry might be very interested in doing.” 
In the longer term, he adds, “current 
treatments for psychiatric disorders are very 
suboptimal. We have little understanding of 
what goes on in, for example, the brain of a 
depressed person, or how depression alters 
brain function. We need to understand the 
construction and function of the normal 
circuits that process emotional behaviors in 
order to understand how that function can 
become abnormal.” 

http://www.its.caltech.edu/~steelea/index.html
http://www.its.caltech.edu/~steelea/index.html
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David Anderson is the Benzer Professor 
of Biology and an Investigator at the How-
ard Hughes Medical Institute. He earned 
his PhD at Rockefeller University in 1983 
and came to Caltech as an assistant pro-
fessor in 1986.

Pietro Perona is the Puckett Profes-
sor of Electrical Engineering. He earned 
his PhD at Berkeley in 1990 and moved 
south to Caltech the following year. 

Michael Dickinson earned his PhD at 
the University of Washington in 1989. He 
arrived at Caltech as a visiting associate 
in 2001 and became a full professor here 
the following year. He was the Zarem Pro-
fessor of Bioengineering at Caltech from 
2003 to 2010. 

On November 18, Anderson, Dickinson, 
and Caltech neurobiologist Christof Koch  
were named to the inaugural group of 
Allen Distinguished Investigators by the 
Paul G. Allen Family Foundation—seven 
scientists “working on some of the most 
exciting research in biology and neurol-
ogy,” according to Microsoft cofounder 
Paul Allen. (For more on Koch’s work, see 
page 14.)

The CADABRA project was funded 
by the National Science Foundation, the 
National Institutes of Health, and an Al-
exander von Humboldt Foundation grant 
to Heiko Dankert. The Ctrax project was 
supported by the National Institutes of 
Health.  

Big brother (and everyone else) is watching you
A block-by-block survey of lower Manhattan conducted by the New York Civil 
Liberties Union in 2006 counted 4,176 security cameras between Battery 
Park and Fourteenth Street—and those were just the ones visible from the 
sidewalk. The city of London is said to have half a million of them, in public 
and private networks. “Right now, the cameras are mostly just videotaping, 
and storing the video,” says Perona. “But in principle, you could network these 
cameras and automatically analyze what they are seeing.” 

Such automatic surveillance could discern forms of suspicious behavior too 
subtle for a human watchman to pick up at a distance. “Suppose you have a 
terrorist wearing a 30-kilogram explosive vest,” says Perona. “He might walk in 
a slightly different way, because of the extra weight on the upper body.” Other 
warning signs might slowly emerge over days or even weeks, eluding all but 
the most acute observers. “Say there’s somebody sitting on a bench, pretend-
ing to be reading a newspaper, but taking mental notes for a future attack. If 
you observe the scene, there is nothing wrong with it. But if you see the same 
person the next day hanging around a phone booth, making a three-hour 
phone call, and on the third day, there they are again, sitting somewhere else, 
you will want to ask them what they are up to.”

“These systems are coming,” says Perona, “and they will be used. And the 
public needs to help regulate them in the proper way.” —DS 

Map by Veronica Olazabal for Who’s Watching? Video Camera Surveillance 

in New York City and the Need for Public Oversight by the New York Civil 

Liberties Union, Fall 2006.

http://biology.caltech.edu/Members/anderson
http://www.vision.caltech.edu/Perona.html
http://www.dickinson.caltech.edu/
http://features.caltech.edu/features/69
http://www.pgafoundations.com/
http://www.nsf.gov/
http://www.nih.gov/
http://www.humboldt-foundation.de/web/home.html
http://www.humboldt-foundation.de/web/home.html
http://www.nyclu.org/publications/report-whos-watching-2006
http://www.nyclu.org/publications/report-whos-watching-2006

