
OTH OBJECTS above are computers. If you 
put reliable information into each of them, 

and if previously each has received appropriate 
programming, each will deliver what appear to be 
intelligent responses. At this macroscopic scale, 
however, it's impossible to determine whether the 
microprocessor and the human brain store and re
trieve memories and make decisions on the same 
principles or on different ones. 

While it isn't obvious from looking at their 
architecture whether or not the brain and the com
puter work on the same principles, it is clear that 
they don't carry out all tasks equally well. If you 
"vant to remember a million things accurately, it 
is better to do it on a computer than to trust your 
brain. On the other hand, your brain is capable of 
recognizing the face of somebody you haven't 
seen in ten years, even though both the face and 
the context may have changed considerably. It is 
very,' hard to \vrite a computer program to make 
such a recognition, and these routine abilities of 
animals are astounding by comparison: 

A closer look at their processing elements -
a processing chip and a stained section of a 
brain (opposite page) - reveals more about how 
they work. This chip, which is one-quarter inch 
on a side, contains about 5,000 individual devices 
called gates. This is small compared to modem 

2 DIGINEERING & SCIENCE / SIoPTEt,lBER 1,,,2 

Memory 

by John Hopfield 

chips, which can have 50,000 or 100,000 indi
vidual devices on them. There are also many 
input and output leads to a chip - so many that 
you can't figure out from the circuit diagram of 
the chip itself how to use it. There are too many 
different ways of applying inputs to be able to try 
them all. If you don't know what the designer 
intended you won't find a useful function for a 
processor chip. 

The human neural system also has processing 
elements - the individual nerve cells (or 
neurons), each with long branching arms. These 
branches have still finer branches, where connec
tions are made from other cells. There are about 
1,000 to 100,000 connections, or synapses, for 
each neuron. 

A modem computer has about ten million indi
vidual silicon gates or processing elements, each 
typically connected to three or four other ele
ments. In comparison, a human brain has about 
1,000 times as many cells as the modem compu
ter does computt:r elements, and each cell has ab
out 1,000 times as many synapses. So the brain is 
about a million times more complex than a large 
computer, though the computers are growing 
rapidly and will eventually rival a brain in com
plexity. 

There is a major difference in the importance 



of the individual computing element for these sys
tems. This difference is most visible in the sensi
tivity of these two computers to the failure of in
dividual elements and suggests the occurrence of 
differing modes of operation. The brain of a 12-
year-old child has a certain number of cells in it. 
By the time that child reaches 50, a few percent 
of the cells will have died. Yet his brain will still 
work very well, perhaps even better than it did at 
12. In contrast, if one percent of the transistors in 
a computer go bad, it won't do anything at all. 
The reason for this difference is that the layout of 
the electronic computer is carefully planned. 
There isn't a transistor in it that wasn't put there 
with a purpose in mind. If that transistor goes 
bad, that purpose doesn't get carried out. The 
brain had no such grand overall planning done for 
it. Evolution didn't figure out ahead of time that 
if you build a brain exactly one certain way it will 
all work. Fortunately, since the biological com
puter must operate in a somewhat more holistic 
fashion than an electronic computer, it's also 
more fail-safe. How the brain actually manages to 
achieve such a mode of operation is among the 
most interesting problems of biology. 

In physical science the customary and best way 
to study the fundamental interaction between sim
ple objects is to put a few of them together and 
observe what happens. But new properties 
emerge as a result of having a very large number 
of those simple objects or elements. Take as an 
example the collision of molecules. To study sim
ple collisions we can put two molecules in a large 
box. Every once in a while they collide, and 

that's an exciting event in the life of someone 
studying molecular collisons. After a while it gets 
boring waiting for them to collide, so we'll put in 
ten molecules or even 1,000. All that happens 
then is more frequent collisions between two ob
jects, and the collisions will look the same as they 
did when there were only two molecules present. 

But if we put a billion billion (lOIS) molecules 
in the box, there's a new phenomenon - sound 
waves. Sound waves wouldn't exist without colli
sions, which keep the sound waves organized. 
There was nothing in the behavior of two mole
cules in the box - or ten or 1,000 molecules -
that would suggest to you that a billion billion 
molecules would be able to produce sound waves. 
Sound waves are a collective phenomenon, which 
takes place only when there are huge numbers of 
molecules present. Many of the lavis of physics 
are collective in nature, including thermody
namics, hydrodynamics, magnetism, and the fact 
that materials have solid, liquid, and gas phases. 

The brain has a huge number of elements -
about 1013. Do large collections of neurons have 
collective properties like other large physical sys
tems? And if they do, are these collective effects 
used in the computations that a brain can do? One 
thing that the brain can do is keep memories in
tact. For instance, we all remember dozens of 
telephone numbers, with names, faces, places, 
and sets of experiences associated with each one. 
How do those telephone numbers and personal as
sociations remain distinct without getting scram
bled? Could a collective property keep a memory 
as an entity, unmixed with other memories? 

Staining one neuron in 100 pro
duces this picture (far left! Cif the 
brain's individual cell bodies 
with their branching arms that 
connect to other neurons. Each 
neuron has between 1,000 and 
10,000 such connections. ffthe 
other 99 percent of the neurons 
were stained, this picture would 
be completely black. The 18-bit 
microprocessor (Ipft) designed 
by graduate student John 
Wawrzynek (YAPP stondsfor 
"yet another processor proj
ect") is 0 one-quarter inch sili
con chip containing about 5,000 
individual devices, or gates. 
Modern chips can have 20 times 
this number. 

3 



A content-addressable memory 
can be likened to a simple 

physical system such as this con
tour map, which describes a ter
rain in terms of altitude. M oun-

tain peaks are represented by 
dots, valley bottoms by Xs; the 

solid lines describe high altitude 
contours and the dotted lines, 
low contours. The valleys are 
like salt lakes with no connec-

tions with other valleys or 
escape routes worn by water. 
Another interpretation of this 

terrain appears on the 
following page. 

A computer keeps memories distinct and held 
together in a way that we can liken to a very tall, 
very skinny library - 100,000 stories tall- with 
one book stored per floor. If we write the infor
mation we want to keep connected together in one 
book, and store the book on one particular floor, 
all we have to know to get that information out is 
the floor it's stored on. The information has obvi
ously stayed together because it's all in one book. 

That kind of memory doesn't work in biology. 
For one thing, as far as we know, there is no such 
thing as the address of a memory in the sense that 
there is a particular book on a particular floor. 
For another, a biological memory is content 
addressable; that is, a big memory - of a tele
phone number, a name, a person, the experiences 
you've had with that person, some places you've 
been together, and so on - holds together. Any 
part of that memory can be used to try to retrieve 
the whole thing. If you're reminded of any bit
the telephone number, or the name, or a common 
experience - all parts of the memory come 
together and can be retrieved. There is no one 
single part of the memory that plays the role of 
the library floor number and can be used to reach 
the memory. Rather, the memory can be retrieved 
by any reasonable part of the content. 

Another difference between computer memory 
and biological memory is the locality of storage. 
It is generally believed that memories in our 
heads are much less locally stored than those in 
computers. 'What is "local" or "nonlocal" stor-

4 ENGINEERING & SCIENCE / SEPTEMBER 1982 

age of memory? If I want to remember the word 
"Caltech," I can write "Caltech" on one page of 
a book. That's a local memory. If! rip the page 
out, the memory is not in the book any longer. If 
I had ripped out some other page, the memory 
would still be there. There is, however, another 
way of storing' 'Caltech" in a book. If I write it 
across the fore edge of the book (across the edges 
of the pages), ripping out one page or any par
ticular page doesn't degrade the memory of "Cal
tech" written across the edge. Even if I ripped 
out 5 percent of the pages, I would still be able to 
retrieve that memory. This is nonlocal storage of 
information. 

The trouble is, a book doesn't have many 
edges. If I want to store a lot of memories that 
way, I'm going to have to write one over another. 
If I do that and then try to recall a particular 
memory, it's going to be difficult to pull it out 
accurately and unmixed with others because it has 
many other memories written on top of it. Hold
ing memories together in nonlocal storage is, I 
think, one of the fundamental problems that 
biological memories have had to solve. 

Essential to the properties of content address
ability and nonlocal storage is the fact that 
biological memory is not a linear system. 
Relations between input signals and output re
sponses can be either linear or nonlinear. A great 
deal of physics and engineering is done with 
linear systems, and usually linear systems are 
easier to analyze than are nonlinear systems. But 
they do not always generate the desired outcome. 
For example, if I give a particular name to a 
linear memory system storing telephone numbers 
and names in memory, it will evoke the corre
sponding telephone number. If I give it a different 
one of its remembered names, it produces a differ
ent corresponding phone number. But if I give it 
a confusion of names, say, a 50-50 mixture of the 
two names, it will produce a 50-50 mixture, or an 
average of the two outputs. Since an averaged 
telephone number is of little use to anyone, it is 
fortunate that our brains don't work this way. 

The essence of a content-addressable memory 
can be described in terms of the spontaneous be
havior of appropriate simple physical systems. As 
an example we can use a contour map of a simple 
terrain, perhaps a lunar terrain, with mountain 
peaks and with valleys that don't connect with 
one another or lead down toward the ocean as 
they would on earth. A contour map defines a ter
rain in terms of altitude, but there is also another 
way to describe it - by a flow map showing 
which paths raindrops landing at any point would 
follow downhill, eventually to accumulate at the 
lowest places. 



A flow map has all the information that the 
contour map contains but in a different repre
sentation. In looking at the flow map by itself 
without any knowledge of altitude differences, 
you would think that the raindrops were moti
vated by some miraculous laws of forces of 
attraction to specific locations. But knowing that 
there's a contour map behind it you know the se
cret - that this map doesn't come from myste
rious forces. It comes from the flow pattern of 
water flowing downhill, and there is a terrain 
underneath causing the particular flmv pattern. 

In some sense this flow map is like a content
addressable memory. Just as a water droplet 
falling somewhere near the position of a valley 
bottom will flow to exactly the bottom position, 
so partial information can ultimately generate 
total information. Think of a particular valley lo
cation as being precise information. If you start 
anywhere vaguely near that position (having been 
given only partial information about the location 
of the valley) and simply follow the raindrops 
along, you'll come to the precise valley location. 
Then you'll stop moving because you've reached 
the lowest point around. Anyone of these lowest 
points might be thought of as memory. 

We can also describe a content-addressable 
memory in a computer or brain in such a way as 
to be able to understand it by a flo'}.' map of this 
sort. A computer is basically a large number of 
switches. At any moment each switch is either on 
or off. Each switch can be represented as a one, if 
it's on, or as a zero, if it's off. The present state 
of the computer can be represented by a long 
string of ones and zeroes, simply listing what its 
switch positions are at the moment. With time, 
the computer changes the switches around, but at 
any particular time you can represent what the 
computer is like by how the switches are set. 

The same is presumably true of a set of 
neurons, though neural s'Nitches are more compli
cated - for example, they are not simply on or 
off. But conceptually the idea in brains is very 
similar. What your brain is like at any moment is 
described both by its connections and by which of 
the neurons are at the moment active (ones) and 
which are inactive (zeroes). 

A particular memory state in a computer can be 
thought of as a long string of ones and zeroes -
a long word in an alphabet with only two sym
bols. Different memories are simply different 
strings of ones and zeroes. In a content
addressable memory, an initial clue to a memory 
that somewhat resembles a particular one of the 
memories, say a slight "misspelling" of the ones 
and zeroes, will be able to change the "wrong" 
ones and zeroes to achieve exactly the desired 

memory. For example, the two states below differ 
in the five places indicated by arrows. 

memory state. 11010110110001 . 
initial clue ... 1110011 0 10 1000 . 

AU ~~ it 

If the computer starting in a state represented 
by the initial clue could change these five ones to 
zeroes (or zeroes to ones) to match the first state, 
it would be behaving as a content-addressable 
memory. 

In order to tum this description into a kind of 
physical map, we could say that these two states 
are five units apart in distance. We could then 
draw a picture of a space in which every point 
represents a possible state of the computer, a 
possible computer word, and some particular ones 
of those states are the things that we have stored 
as memories. What we need for a content
addressable memory is for initial states of the 
computer near one memory but distant from 
others to change with time to become the nearby 
memory. 

If we think of a content-addressable memory in 
these terms, we end up with a flow map like the 
one generated by raindrops flowing downhill. The 
flow in state space tends to accumulate at the 
points representing the memories. If you start 
with information somewhat like the memory, you 
will be able to retrieve the whole thing. If you 
start halfway bet\veen two points, you will end up 
at one or the other, but not in a linear combina
tion of the two. 

The information of the contour 
map on the preceding page can 
also be described by afiow map. 
The arrow paths indicate how a 
drop of wota would flow from 
higher ground ending up at an 
X, whirh marks a volley bottom. 
Without knowing the' 'secret" 
that the flow is downhill, it 
would be easy to conclude that 
the flow is motivated by some 
mysterious force. 

5 



In the "Caltech neuronal com
puter," a model representing 

1 ,000 neurons as 1 ,000 Cdtech 
students, each student would 

have on his desk an apparatus 
similar to this. Each has many 

wires coming in from and going 
out to other students, but it does 

not matter which students are 
connected to each other. 

Switches an opened and closed 
according to the meter at ran

dom time intervals. Surprisingly, 
the system will quickly settle 

down to one of 100 stable states 
out of a possible 1 O'uo. 

We derived the flow pattern of the figure from 
a very simple physical system, so it's clear that 
real physical systems can have the kind of flow 
patterns necessary for a content-addressable mem
ory. Nor did we have to plan how to obtain con
tent-addressability. This feature arose spon
taneously. In that same sense we might ask 
whether the physical system consisting of a col
lection of neurons is of such a nature that it will 
spontaneously produce for its states a flow pattern 
like this. 

I've been doing mathematical modeling of such 
systems, trying to abstract essential features of 
neurons and see if this kind of flow pattern will 
happen. To see what sort of simple system is ca
pable of generating this flow, we can imagine a 
hypothetical system representing 1,000 neurons 
as 1,000 Caltech students busy working on their 
calculus problem sets. Each is sitting at a desk, in 
the comer of \vhich is a little apparatus with a 
battery, a switch, and an ammeter. The switch 
connects to wires going out to many other stu
dents, but no student needs to know exactly 
where his own wires go. And each student, of 
course, has wires coming infrom many other stu
dents through resistors and through the ammeter 
that measures the current. It's all hooked to a 
water pipe to get a "ground" return current path. 

Each student is given the following instruc
tions: Every once in a while look up from your 
problem set and observe your meter. If the needle 
is pointing to ON on the dial, close your switch; 
if your switch is already closed, leave it closed. If 
the needle is pointing to OFF, open the switch, or 
if the switch is already open, leave it open. Then 
go back to your homework. 

This system preserves crudely some of the 
essential features of interacting nerve cells. The 
apparatus of each student represents a neuron. 

6 ENGINEERING & SCIENCE / SEPTEMBER 1982 

The switch being open or closed corresponds to 
whether each neuron is making an output or not. 
Each of the student neurons puts out leads to 
many others and gets inputs from a comparable 
number. The input connections from the other 
students are the synapses in the case of neurons, 
and the strengths correspond to adjustments of the 
resistors. 

What happens if you give these instructions 
and then simply tum the system loose? You can 
describe the state of the system at any moment by 
writing down the names of all the students and 
opposite each name a zero for open and a one for 
closed - 1,000 ones and zeroes. There are 10300 

different states this system can be in, which is 
more than the number of atoms in the universe. 
So it's not obvious what's going to happen when 
the system is turned loose. It could keep going 
from state to state and never run out of new ones 
to go to. 

But this does not happen. Of that nearly in
finite number of states, only about 100 will be 
stable. The system will quickly settle down to one 
of 100 memories in it. Each of these memories 
corresponds to a particular set of students' switch 
settings. Each memory consists of a 1,000-bit 
"word" - the amount of information in 200 
typewritten characters or a little more than four of 
these lines of type. 

This memory turns out to be content address
able. You can create a particular memory state by 
telling the first 50 students which way to set their 
switches for that memory state. Then if the other 
students follow the usual procedure of looking up 
occasionally and throwing the switch, they will 
actually reconstruct the particular stable memory 
that corresponds to the switch setting of the first 
50 students. Any 50 students would suffice. So 
this memory is content addressable and address
able by any part of the information in it. 

How is it that this system (which has no par
ticular design principles and which might con
ceivably wander anywhere in its huge number of 
states) actually goes to stable states? In the case 
of the pattern of water flowing, looking only at 
water moving across the surface produced a mys
tery. Understanding that there was really a hidden 
contour map and that the water was flowing 
downhill made the whole thing understandable. 
There was a secret in understanding the cause of 
flow pattern for water. 

Sometimes flows in physical systems are 
directed by collective principles. For example, 
the flow of heat from a high temperature object to 
a low temperature object is a collective effect, 
and comes about only because of the large num
ber of molecules in each object. If the objects 



were tiny enough, heat would no longer always 
flow from the hot to the cold. Similarly, when I 
wrote down the mathematics that describes how 
on the average the students will change the posi
tions of their switches with time, I found a 
quantity that plays the role of the height and con
tour map in the water flow problem or the 
temperature difference in heat flow, and drives 
the system in a collective fashion inexorably to
ward stable states. 

In the Caltech student "neuronal" computer 
system the stable memories are determined by the 
particular values of the resistors that lie in the 
connections between students. Each connection 
between one student and another has one of these 
resistors in it, just as in neurobiology each con
nection between a neuron and another neuron has 
a synapse in the pathway. Many neurobiologists 
think that the place where information is stored in 
a biological memory is in the strength of the 
synaptic connections between particular neurons. 

In order to have a useful memory, you need to 
have a way of establishing what is to be remem
bered. If this system (with its 100 stable states) 
remembers an arbitrary 400 lines of type, it's not 
much help. You would like to be able to specify 
exactly which 400 lines of type are stored out of 
the 10300 possibilities. You can do this by adjust
ing the resistors appropriately. There turns out to 
be a very simple way of adjusting them that in
volves no global information about the memory. 
You need only local information. Each resistor 
actually participates in many of the memories but 
has no idea of the total memory. There are so 
many resistors that if you were to take one of 
them out, you wouldn't forget anything. If one of 
the students were to go to sleep, one bit of in
formation in the 1 ,OOO-bit word (or state) would 
disappear, but the memory presented by the other 
999 students would remain intact and correct. Be
cause the system is based on very large numbers 
and is collective in nature, it is robust against 
failure in a way that is highly desirable in neuro
biology. 

The system operates through parallel pro
cessing, doing many things together. A student 
doesn't have to wait and see what another student 
does. Each student flips a switch or not according 
to what his meter is doing at the moment he hap
pens to look up. Parallel processing is one of two 
different kinds of processing in computer science; 
the other is serial processing, doing things one 
after another. Most computers rely heavily on 
serial processing. 

The importance of "parallel" and "serial" in 
computers can be illustrated by considering two 
problems involving the sentences in a book. If I 

try to find the location of one particular sentence 
in a book, I can do it in parallel by tearing out the 
pages, distributing them to a group of people, and 
asking each one to read his page to see if the sen
tence is present. That way I'll find out very rapid
ly where the sentence is. Each of the tasks of 
looking at a particular page can be done in paral
lel, independently of all the others. 

The position of a sentence in a book can also 
present a different probJem. I could break up the 
book into its individual sentences and then try to 
reassemble it with the help of the same group of 
people. Each of them is given a page number and 
told to pick out a set of sentences appropriate for 
his particular page. If you are given page 75, you 
will have trouble making your choice unless you 
have seen the contents of pages 1 to 74. This is 
clearly a sequential or serial task. 

Biology is different from most modem comput
ers in that biology heavily empha~izes parallel 
processing. The collective processing that my 
simple array of students (or neurons) did is also 
highly parallel in nature. It accomplishes a mem
ory retrieval task that from the point of view of 
planned computers might be most readily done by 
a sequential operation, and yet it manages to do 
so effectively even though operating in parallel. 

Useful computational properties, which one 
might expect to have to carefully design, can 
generate themselves (in this case, at least) as 
collective properties of a large system of simple 
elements. The fascinating intactness of memories 
seems to come about in a spontaneous ,yay us a 
collective behavior of a system with simple 
elements that have the plausible behavior of 
neurons. All the functions of the devices needed 
for the student computer system algorithm could 
easily be duplicated with neurons (or with silicon 
devices!). The evolution of higher nervous func
tion and intelligent behavior would be easier to 
understand if some of it is based on collective 
properties, rather than based on the precise design 
necessary to make conventional computers having 
the capabilities of higher nervous function. 

The same principles could be used to design a 
silicon-based computer system very different from 
current ones. It would have ten times as many 
elements but could tolerate the failure of one per
cent of its devices. This design, which might be 
called biological design, would use parallel pro
cessing in a natural way and should have corres
ponding speed advantages in many tasks. 

Thus, I think the two computers discussed at 
the beginning of this article achieve their similar 
computational abilities rather differently. I be
lieve that thinking about these differences \vill 
enhance our understanding of each. D 

7 


