
Putnam Problems-Play by Play 

For the past ten years on a Saturday in 
early December a Caltech team has fought 
for the school's honor (and individual 
glory) in national competition and has 
emerged victorious five times. It's not the 
football team - or the water polo team -
but, what else, the mathematics team. It 
actually did not extend its winning ~treak 
this year but still came in a very respect
able sixth in the William Lowell Putnam 
Mathemetical Competition out of more 
than 200 teams from the United States and 
Canada. (Well, you can't win 'em all; 
USC didn't get to the Rose Bowl this 
year, either.) In the 41 years of the Put
nam Competition only Harvard has won 
more times (9) than Caltech (8); besides 
the latest winning streak, the Beavers won 
in 1950, 1962, and 1964. In the past ten 
years only one other school has won more 
than once - Washington University (in 
St. Louis) in 1977 and 1980. 

William Lowell Putnam, Harvard class 
of 1882, believed strongly in the merits of 
intelkctual intercollegiate competition. In 
1927 his widow created a trust fund to 
establish such a competition, which is 
now under the administration of the 
Mathematical Association of America. 
The first match was held in 1938. Among 
the early winners was Richard P. Feyn
man, then an uridergraduate at MIT, now 
the Richard Chace Tolman Professor of 
Theoretical Physics and Nobel laureate. 

Nowadays more than 2,000 under
graduates enter the Putnam competition 
every year. On the first Saturday in De
cember they spend three hours in.the 
morning and three in the afternoon taking 
a written examination at their home 
schools. Everyone gets the same six prob
lems in the morning and six more in the 
afternoon, made up each year by a com
mittee of three mathematicians (often for
mef Putnam winners). The problems are 
designed to test "originality as well as 
technical competence," which means 
simply that they tend to be very hard. The 
top grade last year was 61 percent, and 
only 43 students scored over 33 percent. 

Contestants compete for cash prizes as 
well as personal glory (mathematicians 
don't have to worry about their amateur 
status). Prizes are awarded to the top five 
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winners, whose ranking is not revealed, 
and to sixth through tenth place. To make 
things more interesting, some of the stu
dents are chosen in advance as team mem
bers representing their schools. Each team 
has three members, whose individual 
rankings on the test are added together to 
get the team score (the lower the better, 
just as in cross-country). The top five 
teams also win prizes for their respective 
mathematics departments. 

Coach of the Caltech team is Gary 
Lorden, professor of mathematics, who 
doesn't really do much coaching. The Put
nam team doesn't have to endure long 
hours of workouts - just one "how to 
solve it" session Lorden holds a few days 
before the exam. Although not requiring 
an extremely advanced or sophisticated 
knowledge of mathematics (freshmen 
enter as well as seniors), the examination 
presupposes familiarity with "subtleties 
beyond the routine solution devices" of 
differential equations and expects that 
"elementary concepts from group theory, 
set theory, graph theory, lattice theory, 
number theory, and cardinal arithmetic 
will not be entirely foreign to the contest
ant's experience." But ingenuity is the 
key to success. 

The problems need to be fair as well as 
interesting, according to Lorden - fair in 
the sense that you shouldn't be able to ar
rive at a solution by luck, and interesting 
in that the solution should be intriguing to 
other mathematicians. Many of the prob
lems also involve a kind of mathematics 
folklore - ideas that people who delight 
in solving this kind of problem usually 
seem to be familiar with. But it's not just 
a matter of a bagful of tricks either, says 
Lorden. "There aren't that many tricks to 
learn; mostly it's just being sort of clever 
and that is something that's hard to 
teach. " 

One of the cleverest of Caltech's recent 
entrants has been senior Peter Shor, a 
veteran of four years of the team. He 
came in sixth as a freshman, was ranked 
in the top five the following year, and 
then, with old age taking its inevitable toll 
a bit early, fell to 8th and 13th place re
spectively as a junior and senior. Shor had 
particularly good qualifications for the 

You want to find two points on any closed 
curve, says Peter Shor, so that a given point 
inside that curve is exactly in the middle of 
the line between those two points. 

Putnam team; in high school he was a 
member of the U. S. team that won the 
1977 Mathematics Olympiad against high 
school teams from 21 other countries. 
Any coach would welcome an Olympic 
winner! After graduation Shor plans to 
study math in graduate school at MIT. 

Although the answers to the Putnam 
problems are published annually in the 
American Mathematical Monthly, those 
answers are terse, to say the least, and not 
much help to the fairly casual observer, 
unless he happens to already know how to 
do it anyway. But Shor has picked out for 
E&S some of his favorite Putnam prob
lems and explained how he arrived at the 
solutions. His explanations may not exact
ly make it all look easy, but at least they 
bring the Putnam Competition into range 
- like instant replay in slow motion -
where the skills can be observed and 
appreciated by the great majority of us 
whose ingenuity falls somewhat short. 
Following is Shor's play-by-play 
description. 

The first is problem B-4 from 1977: 
Let C be a continuous closed curve in the 
plane which does not cross itself and let Q 
be a point inside C. Show that there exist 
points PI and P2 on C such that Q is the 
midpoint of the line segment P IP2• 
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If the curve rotated around the point crosses the original curve at one 
point, then it's also going to cross it at another point. 

Some point P (designated R1 in the text) on the original curve is going 
to be the farthest away from 0, so that PO is a maximum distance. 

You want to find two points on any 
closed curve so that a given point inside 
that curve is exactly in the middle of the 
line between those two points. Suppose 
you just rotate the entire curve 180 de
grees in the same plane around the point 
Q. (Moving things around in a plane is a 
nice way of solving some problems. The 
Mathematics Olympiad had a lot of this 
sort of thing because we weren't supposed 
to know calculus yeL) Now, once you've 
done that, let's suppose that the rotated 
curve crosses, or intersects, the original 
curve. And if it crosses the original curve 
at one point, P], then it's also going to 
cross it at another point, P2, on the other 
side of point Q (because you rotated it 180 
degrees around Q). Since Pion the origi
nal curve corresponds to the position of P2 
on the rotated curve and P2 on the original 
curve corresponds to Pion the rotated 
curve, then PIQ and P2Q have to be the 
same length. So Q is the midpoint of the 
line segment PIP2. 

But that's not quite all. This is true if 
the curve crosses itself. You have to show 
that that does indeed happen; you have to 
show that when you rotate it 180 degrees 
around itself, there is some point where 
the rotated curve intersects the original 
one. That's not hard to do because you 
know that some point - let's call it R I -
on this original curve is going to be the 
farthest point away from Q, so that RIQ is 
the maximum distance; there's another 
point, R2, such that R2Q is the minimum 
distance from Q to the curve. If you want 
to be technical about it, this comes from 
something called compactness, which we 
don't want to worry about now. So this 
point R2 - the closest one - must be in-
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side the rotated curve, because the rotated 
curve can't have passed between this point 
and Q. If it did, there would have to be a 
point closer to Q, and there isn't because 
we defined R2 as the closest. By the same 
reasoning, RI must be outside the rotated 
curve. And a curve connecting something 
inside and something outside has to cross 
somewhere. So we have shown that the 
original curve and the rotated curve do in
tersect. And we have already shown that 
if they do intersect, there must be two 
points that are equidistant from Q. 

This next one is from the latest Putnam 
contest, problem A-4 from 1980: 
(a) Prove that there exist integers a, b, c, 
not all zero and each of absolute value 
less than one million, such that 

I a + bV2 + cV3l< 10'" 
(b) Let a, b, c be integers, not all zero and 
each of absolute value less than one mil
lion. Prove that 

I a + bV2 + cV3l> 10-21 

When you first look at it, it looks rather 
unusual- fairly bizarre really. You start 
looking at all these numbers - a, b, and c 
can be positive or negative, but each has 
to be less than 1 million, or 106

, and a + 
bV2 + cV3 has to be less than 10-" , or 
.00000000001. Since this is very close to 
zero, one way to approach the problem is 
to find two numbers of this form that are 
very close together, so that when you sub
tract them, their difference is close to 
zero. 

So let's say we have besides a, b, and 
c, al and bl and Cl; if we subtract al + 
bl V2 + Cl V3 from a + bV2 + cV3, 

we end up with (a-al) + (b~bl)V2 + 
(c-cl)V3, which is to be small. Just how 
small? If we can show that it's smaller 
than 10-11 we will have solved the first part 
of the problem. If a, b, and c, and a], bl , 
and Cl are positive integers less than 106

, 

then a-al and b-bl and so on are less than 
a million, because if you subtract two 
ordinary positive integers less than I mil
lion, your answer can't be larger than a 
million; it could be negative but can't be 
bigger than 106 or less than - 106

• Since 
1 + V2 + V3 is less than 10, then the 
number a + bV2 + cV3 must be less 
than 107

• And since these numbers are 
positive they lie between 0 and 107

• 

We have a million choices for a, a mil
lion choices for b, and a million choices 
for c. If we plug them all in for a + bV2 
+ cV3, we get 106 times 106 times 106

, 

or 10'8 numbers of that form squeezed be
tween 0 and 107

• If we space them all 
equally, then they would all be 107110'8 , or 
10-" , distance apart. And if we don't 
space them all equally, they're going to 
have to be closer than 10-11

• There have to 
be at least two points in there that are 
closer together than 10-11 so that the differ
ence when you subtract them is less than 
10-11

• Strictly speaking. even if they were 
all equally spaced, they would be closer 
than 10''' because 1 + v2' + v3' is less 
than 10, which makes the interval actually 
less than 10' and an average distance of 
less than 10-11

• 

And what if they're the same number? 
In this part of the problem that doe~n't 
matter because subtracting them would 
give you zero, which is certainly less than 
10-11

• However, that brings us to the 
second part of the problem, which asks us 
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to show that Iii + bY2 + cv'31 is 
greater than 10" I. 

(The flrst part of this problem was sup
posed to be relatively easy. We're going 
to leave the second part for interested 
reader~ to tackle; it's more difficult and 
involves an entirely different idea and 
technique. It's .not that Shor didn't figure 
it out; he did, and we will publish the 
solution in the next issue.) 

And finally, problem A-4 from 1979: 
Let A be a set of 2n points in the plane, 
no three of which are collinear. Suppose 
that n of them are colored red and the re
maining n blue. Prove or disprove: there 
are n closed straight line segments, no two 
with a point in common, such that the 
endpoints of each segment are points of A 
having different colors. 

This is a connect-the-dots problem 
essentially. You've got n blue dots and n 
red dots and you have to connect blue 
ones to red ones with straight lines so that 
no lines cross. You have to show that this 
can be done no matter where the points 
are. 

A good way to start is to put down a 
bunch of points and try to get a good idea. 
You look at them and think: Which points 
can you connect without interfering with 
any of the other possible connections? 
Which ones can you connect so that they 
won't come back to haunt you? 

The obvious ones to connect are the 
ones on the outside. How do we define 
what "outside" means? If you connect all 
the points - every point with every other 
point regardless of color, there will be 
some connectiojls located so that all the 
rest of the points will lie on one side of 
that line. (It won't work if there are three 
points on the same line, but the conditions 
state that no two lines have a point in 
common.) Now, if there are a red point 
and a blue point on the outside, then there 
has to be a red one next to a blue one 
someplace on the outside. So you connect 
these two, and that line will be on the 
outside and will not interfere with any 
subsequent lines that you draw. If you can 
connect two points on the outside, then 
you only have to work with the rest, 
which is a smaller number of each color, 
so you can just do the same thing again -
reduced to a smaller problem - and so 
on. If you can do it with four of each 
color, then by induction you can do it 
with three, with two, and with one of 
each color. 
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However, to make this work we 
assumed there were a red point and a blue 
point somewhere on the outside to start 
with. The solution doesn't work if all the 
points on the outside are the same color 
-let's say blue. Since we can't connect 
two of the outside dots in this case, we 
have to think of something else. I remem
ber staring at this for awhile before getting 
an idea - some way of measuring the 
points from left to right. We can put in a 
coordinate axis (and rotate things around 
if we have to so that this axis doesn't 
make any point directly above another, 
that is, the same left-to-rightness) and 
then label the points 1, 2, 3, and so on, 
starting from the leftmost point and 
numbering them to the rightmost point. 
No matter how we draw the axis, each of 
these extreme points has to be the same 
color, because all of the outside points are 
the same color in this case. 

If you can draw a vertical line separa
ting two consecutively numbered points 
somewhere in between, so that there is an 
equal number of red points and blue 
points on the left side (they will be the 
lower-numbered ones), then you can solve 
the problem for each side by the proof just 
mentioned. If the colors are equal on the 
left side, they will also be equal on the 
right side of such a line; the two sides 
don't have to be equal to each other. 

We can take our coordinate axis and 
start moving it across the fleld of dots 
from left to right. The first dot we hit will 
have to be blue because we have stated 
that all the outside dots are blue. If we 
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"keep score" of the blue points minus the 
red points as we go across, then we would 
start out with 1 blue point and it would go 
up or down 1 with each point passed. For 
example, if the next point were blue, the 
"score" would go to 2. By the time we 
get to just before the last dot, we would 
have to be at - 1, because the last dot will 
also have to be blue and we have to end 
up with zero. In going from I to - 1, 
somewhere in between we would have 
had to cross zero, giving equal numbers of 
each color on either side. 

It's not unusual in mathematics to have 
a hodgepodge of arguments like this. It 
may not be elegant, but it's legitimate, 
and sometimes the only way, to say that 
either this argument will work or, if it 
doesn't, then this other argument will 
work, and then prove that there aren't any 
cases where none of the arguments will 
work. 

Now for all the Sunday-morning quar
terbacks who have been saying, "Why, 
that's not so hard;" throughout this arti
cle, here are some more Putnam problems 
to try out yourselves. Shor's answers will 
be published in the next issue of E&S. 

From 1980: 

Problem B-3 

For which real numbers a does the 
sequence defined by the initial condition 
1Io = a and the recursion Un + I = 2un 

- n' have Un > 0 for all n ;;;, O? 
(Express the answer in the simplest 

form.) 

ProblemB-4 

Let AI, A2, .•. ,A1066 be subsets of a 
finite set X such that IAil > Y21XI for 1 ",; 
i ",; 1066. Prove there exist ten elements 
Xl> ... ,XIO of X such that every Ai con
tains at least one of XI, ... , XIO' 

(Here lSI means the number of elements 
in the set S.) 

From 1978: 

ProblemA-6 

Let n distinct points in the plane be 
given. Prove that fewer than 2n~ pairs of 
them are unit distance apart. (This may 
look simple, but it was one of the hardest 
problems that year.) D 
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