


The world's first man
made feedback neural 
net had six fully inter
connected neurons. 
Each connection used 
a group of four toggle 
switches-the upper 
one chose whether 
the connection was 
inhibitory (- ) or exci
tatory (+ ), and the 
lower three set the 
connection's strength. 
The six toggle 
switches on the lett 
side of the blue circuit 
board input a pattern, 
and the column of 
light-emitting diodes 
(LEOs) to the right lit 
up with the output. 

Neural Networks: 
The Caltech - JPL Connection 

Imagine an aucocratic chef, who can'r stand 
co have another presence in the kitchen, prepar
ing a seven-course banquet. Taped to the wall 
is a master instruCtion list that combines all the 
individual steps from aU the recipes on the eve
ning's menu imetleaved in a sequence that, if 
followed to the lecter, will produce the meal, 
with each dish appearing on the table at its 
appoimed moment. Our chef, a1rhough gifred 
with an excellent set of taste buds, is extremely 
absentminded and can remember JUSt one 
inStfuction at a rime. Thus our hero plops 
a dozen potatoes on the coumer, runs back to 

consu lt the list, peels the potatoes, dashes back 
to the list , CUtS the potatoes into one-inch cubes, 
checks the list, and so on. A conventional
"seriar -computer, from the lowliest laptop to 
rhe mightiest mainframe, works in exaaly the 
same way. The computer's central processing 
unit executes the recipe, or program, step by 
srep-pulling dara out of S[orage piece by piece, 
doing something to each one, and then putting it 
back before looking at the next instruCtion. The 
more powerful the computer, the faster the chef 
sprints. But that's nOt how the brain works 
at all. 

The brain-any brain, from a slug's on 
up-is more like a medieval kitchen in a great 
lord's palace on the eve of a feast. A multitude 
of helpers busdes at a variety of taSks, shouting 
advice and instructions to one another. Every
thing happens all ar once, and the banquet 
emerges almOSt spontaneously from the coordi
nated actions of many individuals. In the brain, 
these individuals are called neurons, and com-

purer systems based on the notion of a network 
of simple devices acting collecrively are called 
neural nerworks. The net 's power lies in the 
interconnections, or synapses, between the neu
rons. The neuron itself is a threshold device 
that - fires ~-generates an Output-whenever its 
cumulative input exceeds its threshold, But one 
neuron in the human brain (and there are about 
10

11
-100 trillion-of them) may conneer to 

LO,OOO Of more other neurons, 
This redundant, highly interconnected scheme 

has other advantages. Returning to the kitchen 
for a moment, if some prankster crossed a line 
off of Super Chefs master list, the goose might 
get cooked unplucked, an error unlikely to hap
pen in the casde kirchen. Or if Super Chef 
should fa ll down the wine-cellar Stairs, the guests 
would go hungty that night. But if a few of the 
castle scaff don't show up, no matter-the dinner 
still comes off. • Fault-tOlerant algorithms - (an 
algorithm is a derailed strategy for atracking a 
problem) and • graceful performance degradation· 
as bits of hardware fai l are hallmarks of neural 
nets but nor, alas, of serial computers. 

Furthermore, serial computers' ability to fol
low lots of step-by-step instructions very, very 
rapidly makes them dandy adding machines or 
tax auditors, bur doesn't enable them to recog
nize Aunt Emma from a photograph, or, having 
recognized her, to remembet that she and Unde 
J oe have twO children and a cabin in the moun
tains, and every other detail of thei r lives. It 
doesn't help a computer to reach for a pen to 
write her a nore, either. These problems don't 
break down into cut-and-dried programs because 
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People have 
know,] all alollg 
that compllters 
and brains 
d ' l' k .Ollt tmll 

alike, bitt 
biology's 
H!btleties 
remain eltIJiz'e. 

there are just too many variations ro list every 
contingency explicitly. But the connections in a 
neural nenvork act like unexplicit rules. Patterns 
of associations-Aunt Emma, Uncle Joe, nvo 
kids, mountain cabin-become patterns of con
nections between neurons. The stronger a con
nection. the closer the association. 

Given an input that matches some part of 
the pattern, the connections allow the net to 

retrieve the rest of it-a feat called associative 
memory. The connections feed back into one 
another, and signals slosh back and forth 
through the network along the pathways with 
the strongest connections. The feedback pulls 
out all the related information, regardless of 
which item you begin with-think of the moun
tains, and you'd still come up with Emma and 
Joe. This is called content-addressable memory. 
And the multiple connections can encode multi
ple memories. keeping Uncle Joe from being 
confused '.vith your bachelor brother Joe. The 
connections can even cope with partially wrong 
input: if someone asked you about Aunt Emma's 
three children, you could set the record straight. 
Conventional computer memories, on the other 
hand, merely tuck away each tidbit of informa
tion in pigeonholes that bear no clues to the rela
tionships between their contents. 

Most things that neural nets do well-recog
nizing patterns such as faces, making decisions 
based on fuzzy or incomplete data, or displaying 
motor skills such as hand-eye coordination
require feedf()rward circuits as well as feedback. 
The theory is that information from an input 
layer of neurons trickles dov;o through one or 
more layers of "hidden neurons, again following 
the pathways of strongest connections, to an out
put layer. The hidden layers somehow filter the 
inpUt, recognize the critical features needed to 

make a decision, and steer the system to the 
correct OUtput, or stable state. 

Neural nets, both man-made and biological, 
work fast. By exploring their options all at once, 
rather than scrutinizing each OIle in turn, they 
give you a pretty good answer immediately 
instead of the best possible ansv,'er in a '.veek. 
And if the nets encounter a strange nev; input, 
they'll make an educated guess based on the 
information they have. 

But the most remarkable feature of neural 
nets is that they can Z:?;trr! to do these things. 
A man-made neural network can alter its internal 
connections-strengthening some, weakening 
others-while being shown a training set of 
correct inpur-ourpur pairs, until its outputS con
sistently match the right Outputs. It may take a 
few thousand tries to get things right, depending 
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on the problem's complexity, but still. ... 
If neural nets are so all-fired smart, why 

haven't they taken over? \,\lhy fool with serial 
computers at all? Because it's an awful lot easier 
for people to design and build something that 
does one thing at a time. People have known 
all along that computers and brains don't think 
alike, but biology's subtleties remain elusive. 
The first simple neural networks capable of 
learning '.vere developed in the 1960s. Through
out the 1960s and 1970s, a handful of people 
labored, with some successes, to develop compu
tational models of how real neurons behave, and 
to create the theoretical and mathematical under
pinnings needed to design machines that could, 
in the broadest sense, mimic that behavior. 

Neural network research began to catch 
fire in the 1980s for several reasons. Neurobiol
ogists have made great strides in finding out how 
neurons work; computers have attained enough 
power to make running serial simulations of par
allel processes practical, if time-consuming; and 
the development of analog VLSI (very-large
scale-integration) chips by Carver Mead (BS '56, 
MS '57, PhD '60), Caltech's Moore Professor of 
Computer Science, is enabling powerful synthetic 
neural nets (albeit puny ones compared to biol
ogy) to be graven in silicon. But the conceptual 
kindling was probably a 1982 paper by John 
Hopheld, the Dickinson Professor of Chemistry 
and Biology, showing that the same mathemati
cal rools that physicists routinely use to analyze 
large physical systems with complex interactions, 
such as freezing liquids, could be applied to a 
network of binary (on/off) switches-a simple 
neural net. Hopfield demonstrated that a set of 
switches. each of which was wired to evety other 
switch-fully interconnected feedback-acted as 
an associative memory; they're no ... v called Hop
field memories. This revelation made neural nets 
accessible to the legion of scientists and engineers 
\\'hose last contact with biology was probably a 
frog in a dissecting pan in high school, but who 
thought that neural nets might be applicable to 
their own computational problems, if they only 
knew how to handle them. 

Even now, however, neural-net research 
lingers in the "not yet" stage, as in, "Can you 
make a neural net that can read a book and 
summarize its plot?" "Not yet. "Well, all 
right; literacy is a lot to ask. Can you make a 
mosquito brain that can dodge a midair swatt 
"Not yet." In fact, the most successful multi
layer neural-net application being sold commer
cially to date is a serial-computer program to 

evaluate loan applicants' creditworthiness. The 
program picked probable defaulters on small 



Right: The DARPA· 
funded 32-neuron net· 
work. 
Far right: A schematic 
drawing of fully inter· 
connected feedback. 

This network 
was big enough 
to address prac
tical engineering 
concerns like 
power 
dissipation. 

loans as accurately or better than did typical 
human loan officers. The number of mosquitos 
employed by S&Ls is unknown. 

Caltech and JPL's history of neural-net 
collaborations goes back to 1981. John Lambe 
(now retired, but still returning bimonthly to 
JPL as a Distinguished Visiting Scientist) was 
visiting campus that spring as a Fairchild Dis
tinguished Scholar on leave from the Ford Motor 
Company. He attended Hopfield's first Caltech 
seminar on neural nets, given in the improbable 
guise of an applied physics talk, and was smitten 
by their possibilities. Lambe left Ford for JPL 
that fall, and immediately built the world's first 
nonbiological feedback neural net-six neurons, 
interconnected ",rith toggle switches, arrayed on 
an 18-inch-square Formica board. "The joke 
used to be that it stored twO bits of information 
per square foot," recalls Anil Thakoor, now the 
head of JPL's Neuroprocessing and Analog 
Computing Devices Group. This network, far 
too small to do anything resembling computa
tion, was nonetheless very useful. Lambe and 
Hopfield played with the toggle switches and 
found that each neuron assumed a predictable 
voltage-the network had settled into a stable 
state, in other words-instantaneously, allaying 
fears that any fully parallel man-made network 
would never settle down, but, a victim of the 
less-than-precise nature of its analog components 
and the stray capacitances in its hardware, would 
oscillate forever instead. This first model was 
built with JPL Director Lew Allen's blessing 
in its most tangible form-money from the 
director's discretionary fund. 
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Lambe, Thakoor, and Alex Moopenn built 
a better net the following year, using Defense 
Advanced Research Projects Agency (DARPA) 
funds this time. This network was also 18 
inches square and used off-the-shelf parts, but 
it had 32 fully interconnected neurons-1024 
synapses. And instead of using toggle switches 
to make binary connecrions, this net used resis
tors to mimic the brain's variable-strength syn
apses. This nerwork was big enough to address 
practical engineering concerns like power dissipa
tion. Since the network's product is a distribu
tion of voltages across its output neurons, any 
internal power loss affects it. Even when the 
connection between two neurons is supposed 
to be strong, you don't want a flood of current 
going through it, burning up power and convert
ing it to heat-a good way to melt components, 
especially with lots of them active simultaneous
ly. The group found that less was more-they 
could make good, strong connections out of 
a network of megohm (million-ohm) resistors, 
put one volt into the network, and get milliwatt 
power dissipation, well within the chip's comfort 
zone. And the output pattern was robust-if 
the initial voltage or some of the resistors were 
ott by a few percent, the network came to the 
same stable output state as fast as ever. 

Having demonstrated that building neural 
nets was actually practical, the next step was to 
try it in VLSI. As it happened, Mead and Hop
field were teaching a joint coutse, The Physics of 
Computation, that year-1983. (Mead, Hop
field, and the late Richard Feynman had initiated 
the course in 1981.) Two of Mead's grad stu-
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A neuron Is conceptu· 
ally a very simple 
device, as the sche· 
matic to the far right 
shows-outpuHing 
"+1" if its input 
exceeds its positive 
threshold, 11-111 if its 
input exceeds its 
negative threshold, 
and "0" if neither of 
the above is true. The 
reality is a trifle more 
complex, as shown by 
this integrated·circuit 
diagram of a seven.bit 
synapse, right. 

dents, Michael Emerling and Massimo Sivilotti 
(MS '86), designed a 22-neuron Hopfield 
memory chip. fully interconnected with adjust
able-strength synapses, as a class exercise. A 
batch of the chips was actually built that 
December-the world 's first single-chip VLSI 
neural nets. The chip could StOre three memo
ries and retrieve anyone of them from partial 
input in less than 50 microseconds (millionths 
of a second). One of the batch was severely 
defective-40 percent of its connections proved 
inoperative-yet ir still held twO memories, and 
retrieved them as quickly as its more able breth
ren. A larger chip followed the next year, and 
silicon neural nets were off and running. 

(Mead's VLSI has only partially solved the 
connectivity problem, however. If each neuron 
connects to every other neuron, then the number 
of synapses increases as the square of the number 
of neurons. A 64-neuron chip-large enough co 
actually do something useful-needs 4096 inter
connections. (By comparison, a slug brain has 
between 100,000 and 1 million neurons.) The 
brain has the luxury of making connections in 
three dimensions, but a microchip is still essen
tially Rat. Fortunately, less-than-ful1 interconnec
tion suffices for many simple applications, It also 
turns out to be wretchedly difficult to make a 
continuously variable resistor our of silicon, 
Digital synapses that use stairways of preset resis
tances are much easier, although their design is 
quite elaborate. An 8-bit synapse affords 256 
steps, sufficient for most applications,) 

A critical mass of people had formed by 
1983. The group included Hopfield; Lambe; 
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Mead; Allen; Thakoor; Terry Cole (PhD '58), 
then a senior member of the technical staff at 
]FL and a senior research associate on campus 
and now JPL's chief technologist and a senior 
facul ry associate on campus C He knew an awful 
lor of people in both camps and was a very 
important part of the glue holding the critical 
mass together: says Hopfield); Demerri Psaltis, 
who joined the Cal tech electrical engineering 
faculry in 1980; John Pierce (BS '33 , MS '34, 
PhD '36), chief technologist at JPL since 1977 
and professor emeritus of electrical engineering 
since 1980; Edward Posner, a visiting professor 
of electrical engineering and )FL's chief telecom
munications and data acquisition technologist; 
and Robert McEliece (BS '64, PhD '67), profes
sor of electrical engineering. The group began 
meeting regularly, if informally I to talk about 
neural nets, and hosted more formal sessions 
each October from 1983 through 1985, which 
drew biologists, engineers, and physicisrs from 
Lab and campus. Anyone doing neural-net work 
\vas encouraged to speak about it , and bound 
copies of the proceedings circulated widely up 
the mountain at JFL and down on campus, 

By 1986, JPL's neural hardware group, then 
under Satish Khanna, was well established, and 
had launched a program to build modular chips 
that could be wired together to make feedback, 
feed forward , or hybrid arrays of any size for 
specific applications. The group now has a fam
ily of neuron-only and synapse-only chips in the 
square, 84-pin format standardized by integrat
ed-circuit manufaaurers. (These chips, and 
every previous one all the way back to Sivilotti 's 



Some of JP!..'s family 
of neural chips. From 
the top: analog, 
binary, and seven-bit 
versions of a 32 x 32 
synapse chip, and a 
36-neuron chip. 

and Emerling's, are actually built by MOSIS, a 
government-funded custom-chip broker for 
defense-related research.) The hardware collab
oration continues very closely today, with Mead 
a frequent visitor up the mountain, often in his 
capacity as a member of the Center for Space 
Microelectronics' scientific advisory board. 'Even 
a quick question to Carver often gets us a signif
icantly better solution to a problem in hand," 
says Thakoor. "He'll point out completely 
new directions to explore." 

Also in 1986, Caltech established its Compu
tation and Neural Systems PhD program, the 
first and, according to Posner, the most truly 
cross-disciplinary one of its kind in the world. 
The program drew faculty from biology, chemis
try, engineering and applied science, physics, and 
mathematics. "It's easier to set these things up 
here than most places, because of Caltech's small 
size and fewer layers of bureaucracy: says Pos
ner, "and that's one of our greatest strengths." 

That same year, Cole and Allen established 
a neural-net theory group at JPl. The Neural 
Computation and Nonlinear Science Group, as 
it is properly called, is headed by Jacob Barhen, 
who is also a visiting associate in engineering and 
applied science on campus. "We have our own 
critical mass of very good people," says Barhen. 
"I think that we and Bell Labs are the only two 
places in the world that have enough nonlinear 
theorists working together to really make a 
difference. Some of the papers we have pub
lished have really revolutionized the field." The 
group does basic research in neural-network 
theory and develops algorithms for specific prob-

A slug brain 
has between 
100,000 and 1 
NzilliOll nellrons. 

lems, driving the development of hardware to 

run them. In general, algorithm design begins 
"lith simulations running on an ordinary com
puter, and many algorithms, still too complex to 
build into hardware, remain there. The simula
tion calculates each neuron's output to its mates 
until the network reaches a stable state. Bar
hen's group is considerably better off than most, 
because their simulations run on the Cray X-MP 
supercomputer recently acquired as a JPL-Caltech 
joint facility. 

The original critical mass lost some of 
its cohesiveness as more people gOt involved. 
Campus folk gravitated to the CNS program, 
and JPL folk, suddenly blessed with Defense 
Department money, became involved in their 
own formal programs. Some collaborations 
continued, but most people went their separate 
ways, exploring the terrain. Projects became 
complementary rather than collaborative. In 
the last year or so, however, a new generation 
of collaborations has sprung up to capitalize on 
the past few years' work. \Y!hile most have been 
successful, a few have foundered because, in the 
words of one campus observer, "You need some
one on the JPL end who is absolutely committed 
to the collaboration for it to work. There's a lot 
of bureaucratic overhead, mainly because JPL's 
research is contract-funded, while Ca-Itech grants 
are usually unrestricted. \'(1hen you're on con
tract funding, you have to break everything 
down into tiny increments, and you spend all 
your time writing progress reports." With that 
caveat duly noted, here are some of the successes. 

JPL's most ambitious hardware project to 
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"There's a lot 
of ad-hockery 
involved now 
when you set 
up a network, 
We'd like to see 
how we could 
make a network 
grow itself into 
the appropriate 
structure as the 
data arrive,» 

date could be called an electronic scout, Given 
a false-color Landsat image of a piece of ground, 
the system finds the best way co drive a vehicle 
from one point in the image to another. Ie 's 
essentially a dara-compression problem. Each 
point. or pixel, of the image consists of 24 bits 
of information-eight each of red, green, and 
blue-but we juSt wane one bit of information: 
can we drive through it or not? Three layers of 
neurons decide what kind of terrain each of the 
almost 17 million possible shades of color repre
sents, using algorithms developed by Nevin 
Bryant, Niles Rittet, and Thomas Logan of 1PL's 
Cartographic Applications Group. The net ulti
mately determines three components: slope, vege
tation rype, and load-bearing capacity. These 
three components reduce to one-the movement 
COSt to pass through that pixel. This ourput 
passes to a quasi-neural chip, under development 
by ]PL hardware handyman Silvio Ebethardt 
wirh Douglas Kerns, a graduate student of 
Hopfield 's. The chip finds the path from point 
A to point B thar incurs the lowest cumulative 
movement cost. A serial simulation of the chip 
works fine. The pwtorype chip itself, which will 
process 25 pixels ac a crack, is scheduled for 
fabrication this summer. 

On a much more modest scale, Ebethardt, 
Femando Pineda (from the Lab's theory gwup), 
and Mead-Hopfield grad student Ronald Benson 
have designed a 4-neuron prototype chip chat 
incorporates the learning algorithm, which nor
mally runs on a digital computer, directly onto 
the chip. This" recurrent back-propagation" 
leaming algorithm (thete are Other rypes) com-



Opposite page: A 
false-color Landsat 
Thematic Mapper 
image (left), combin
ing three visible and 
one infrared spectral 
bands, of a portion of 
Ft_ Lewis, WashIng
ton_ The computer 
interprets the color, 
classifying the terrain 
as either forested 
(dark green), grass):' 
(light green), urban 
(white), water (blue), 
or unclassifiable 
(blaclt)_ A conven
tional program Imid
die) misread numer
ous land areas as 
water or urban, and 
couldn't figure out 
several large regions 
at all. The simulated 
neural network (right), 
although given only 
one-fourth as manlf 
correctllf classified 
regions as exemplars, 
performed consider
ably better. Both pro
grams had trouble 
with Nisqualilf 
Lake-the seahorse
shaped region In the 
lower left of each 
image-whose shal
low, luxuriantly 
vegetated waters 
gave an ambiguous 
spectral signature. 

pares the network's actual output with the 
correct output and, 'with the input still in pbce, 
twiddles the connection weights from the output 
layer on back upstream until the outputS match. 
These algorithms usually clank through many 
cycles of software steps, but Pineda saw a way to 
restate the algorithm as a set of differential equa
tions that could be transcribed directly into sili
con. The neurons connect via floating gate
transistors. The current through a transistor is 
governed by the amount of charge in the transis
tor's gate, 'which would have to be replenished if 
the gate were connected directly to the rest of the 
circuit. But a floating gate sits in splendid isola
tion. Charge injected into it by guantum
mechanical tunneling stays there for months. 

The collaboration had a nice balance of 
forces. Floating gates-which are routine in 
some chip designs but had not been used exten
sively in neural nets-were Benson's specialty. 
He and Eberhardt came up with a circuit design 
based on Pineda's algorithm. The work began 
in November, 1989, and the chip '.'/as sent out 
for fabrication in the spring of 1990. Testing 
will begin in the fall. "Even if this version 
doesn't learn successfully, it will show us a lot 
about how the physics in the chip constrains the 
algorithms that can be put on it. It betters our 
odds of success with the next one, - Pineda says. 

Looking farther ahead, Padhraic Smyth (MS 
'85, PhD '88), of JPL's Communications Sys
tems Research Group, would like to develop 
faster learning algorithms. Smyth did his gradu
ate work with Associate Professor of Electrical 
Engineering Rodney Goodman and has kept in 

close touch with him since moving up the moun
tain. The two are now coprincipal investigators 
on a just-launched two-year project that will use 
techniques from information theory, probability 
theory, and statistics to try to discover exactly 
how neural networks learn. A network learns 
through trial and error, regardless of 'what algo
rithm adjusts the connections. But learning, like 
life, is a risky business. The learning algorithm 
someho'w has to decide what factors in the input 
are critical to making the right decision. If the 
algorithm oversimplifies things, the network's 
mental image" may not apply to all circum

stances, but if the algorithm retains too much 
complexity and enshrines a host of extraneous 
[:lctors in the net, it may not function at all. 

\Xi' c' d like to be able to determine the right net
work architecture just by looking at the data it's 
going to handle,' says Smyth. There's a lot of 
ad-hockery involved now \vhen you set up a net
work. \Xl e' d like to see how we could make a 
network grm'.' itself into the a.ppropriate structure 
as the data arrive: 

Eberhardt and colleagues Taher Daud and 
Raoul Ta'Nel are working with Caltech Senior 
Research Associate in Theoretical Physics Tom 
Gottschalk and former Professor of Theoretical 
Physics Geoffrey Fox (nO'w at Syracuse Univer
sity) on a chip to solve dynamic assignment
problems. The specific problem is this: if there 
arc .2 5 missiles coming at you, and you have .2 5 
missiles of your own to shoot back, how do you 
ensure that each good missile shoots down a 
different bad guy, and doesn't chase all over the 
sky in the process? You don't need to find the 
absolute best solution-the shortest path for each 
missile-in this situation, but you rca/ly need an 
answer fast. The neural net should settle into a 
reasonably good answer in 2. few millionths of a 
second. The chip, now in fabrication, will match 
64 object pairs-skimming through a space of 
2.2 X 108

" possible combinations to do so. 
Although the chip was developed for the Strate
gic Defense Initiative program, the problem is a 
generic one, appearing in such civilian guises as 
routing calls through a telephone e){change, or 
ensuring that all the processing units in a parallel 
computer are sharing the "'lOrk equably. 

Posner, the communications technologist, is 
applying neural networks directly to communica
tIons problems by designing special-purpose nets 
\'lhose architecture mimics the problem's sttuC
ture. One of his grad students, Timothy Brown 
(MS '87, PhD '90), showed in his thesis that a 
certain neural circuit v!ith inhibitory feedbacks 
does, in fact, solve the telephone routing prob
lem quite nicdy. All the members of one set of 
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Routing calls through 
a five-stage telephone 
exchlliinge. Top: the 
relays are routing five 
calls in progress 
(heavy lines, betv/een 
inlet-outlet pairs (1,2" 
(1,2" (2,1), (2,1), and 
(2,2,. Nexi:: A neural .. 
net model of the same 
relay arrangement. 
lEach neuron is shown 
as a large open circle 
with one or more out· 
put lines leading from 
it. A small filled circle 
is an output connec
tion to an adjacent 
neuron. "Path Neu
rons" trace call 
routes. "Feedforward 
Neurons" are stimu
lated by the inlet 
stage, and in turn 
stimulate inactive 
path neurons that 
could carry the call 
forward through the 
network. "Feedback 
Neurons" are stimu
lated by the outlet 
stage, and stimulate 
inactive path neurons 
along iii route leading 
back iov/ard the inlet. 
A path neuron can 
only become active 
when stimulated by 
both a feedfor\vard 
and a feedback neu
ron, thus tracing a 
continuous route 
through the exchange. 
"Winner-Take-All Neu
rons" inhibit compet
ing path neurons, 
preventing each call 
from using more than 
one rouie. Cental': 
The connections avail
able to route addi
tional calls; these 
connections cOrres
pond to the light lines 
in the top figure. 
Next: A call request 
fol' (1,i) turns on the 
feedforward neurons 
leading from Inlet i. 
Active neurons are 
shovln as filled cir
cles. Boiiom: The 
feedback neurons 
from Outlet i turn on, 
lighting up two avail
able routes for the 
call. The winner
take-all neuron at 
Stage'" arbitrarily 
chooses to route the 
call through Relay 2, 
lighting up one set of 
path neurons the rest 
of the way. 
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neurons are connected to each other in the same 
way that the exchange's relays are, and set up 
the call's route. A set of feedback neurons 
ensures that the routes don't interfere with each 
other. And a set of • winner-take-all" neurons 
ensures that each call only gets one route. "Most 
people are looking to neural nets to solve 'fuzzy' 
problems, like pattern recognition, where the 
things in the problem that are critical to solving 
it aren't well understood," says Brown. "This 
problem is very well understood. The phone 
company's computers have been solving it for 
years. But we can solve it much faster by build
ing the computations right into the hardware. 
The network doesn't have to learn anything." 
Brown collaborated with Eberhardt, Daud, and 
Thakoor over the summer, trying to imbue his 
algorithm into an assemblage of the hardware 
group's standard chips. Brown found, as others 
have before him, that getting an algorithm to 
"take" in the hardware isn't as easy as it ought 
to be, but all is not lost-the ]PL group was 
sufficiently impressed to hire him immediately 
upon his graduation. 

And speaking of long-distance calls, there's 
the Communications Systems Research Section, 
in charge of developing the coding concepts and 
hardware and software protorypes that ]PL needs 
to keep in touch with the Voyagers and other 
far-flung spacecraft. Neural networks, so adept 
at learning to recognize patterns, could prove 
useful for the error-correction and data-compres
sion needed to send the data back to Earth. 



The right hemisphere 
of a macaque brain, 
with the visual areas 
mapped in color, as 
seen from the right 
ear (small top figure) 
and from the left hem
isphere (small bottom 
figure). The main 
figure shows the cor
tex unfolded and laid 
out flat. "Vi " is the 
"primary visual a rea." 

Kar-Ming Cheung (MS '85, PhD '8 7) and 
Fabrizio Pollara are working with Goodman 
on a neural-net dara-compressor. )PL engineers 
used considerable ingenuity to cram all the Voy
ager dara inca the narrow communication chan
nel available to it. But Voyager's data stream 
will be to the torrent of data from the next gen
eration of spacecraft as a dripping faucet is to a 
fire hose. A single instrument on one of the two 
Earth Observing SyStem (EOS) craft that will be 
watching our own planet for signs of global 
change (see 'Observing Earth From Space: E&S, 
Winter '89) will be spewing 300 million bits of 
informacion Earrhward every second. Voyager's 
tiny brain could compress data twO- or threefold 
through such stratagems as not transmitting how 
bright a given pixel in an image was, but rather 
the difference in brightness from the previous 
pixel. A neural net might achieve 10 times 
more compression by handling pixels in rectan
gular blocks. The network would compare the 
block to a • code book' of Standardized pixel 
blocks, like matching a wallpaper swatch to 

a pattern book, and would transmit the index 
number corresponding to the block that most 
closely matched the original. A serial computer 
would take an inordinate length of time to 
thumb through a code book big enough to 

guarantee that any input could be matched with 
minimal distortion , but the answer would tumble 
right out of a feed forward net whose connection 
strengths modeled the code book. This project, 
funded by the same director's discretionary fund 

that underwrote the Lab's first neural net, gOt 
under way last year. 

Meanwhile, down on campus, Professor of 
Biology David Van Essen (BS '67) is interested 
in neural nets for what they can tell him about 
real brains. Van Essen began as a traditional 
neurobiologist interested in primate vision. In 
1985, he met physiciSt Charles Andetson (BS 
'57) , then at RCA. 'Charlie was looking at 
the same problems we were, but from the point 
of view of a device designer, and this gave him 
some novel ideas about how the visual system 
might work. When he moved to ]PL in 1987, 
our collaboration increased in scope." Anderson , 
a senior member of the technical staff at )PL, is 
also a visiting associate in biology on campus. 
He and Van Essen are trying to discover why 
the world we see doesn't jump and wobble like 
a movie about to slip off the sprockets. It 
should-our eyes never sit still. Even when 
we stare fixedly at something, our eyeballs jink 
around in tiny involuntary movements. And in 
binocular depth perception, we judge the dis
tance [Q an object whose position may vary by 
only a few seconds of arc between the right-eye 
and left-eye views. (The headlights on a Cadil
lac parked 200 miles away are one arc-second 
apart.) Yet our eyes misalign by as much as 
one-fifth of a degree, even stone-cold sober. 
How does the brain remove the gross errors 
and preserve the subtle differences? 

The pathway from the eye to the visual cor
tex is generally thought of as hard-wired, with 
signals passing linearly along parallel columns 
of neurons in order to preserve relative-position 
information. But any individual retinal cell flick
ers on and off as the image dances across it, so if 
each retinal cell had a direct line to a particular 
cQrtical neuron, then the cortical ~image ~ would 
be correspondingly unStable. 

Anderson and Van Essen propose a pathway 
in which signals shift among columns to com
pensate for a wandering eye. In their neural-net 
simulation, the columns are sliced and layered 
like the pepperonis in a stack of frozen pizzas. 
Each pepperoni sends its output to a set of pep
peronis in the pizza above, but nOt to the one 
pepperoni directly overhead. The connections 
go farther afield with each pizza. A set of inhi
bitory connections within each pizza suppresses 
shifts in al l directions but one, keeping the parts 
of the image aligned. By tracing the right path 
through the pepperonis, the image can be kept 
in a fixed position in the cortex regardless of 
which retinal cells sent the signal. 

The'shifter circuit" hypothesis is still vety 
much in debate, but it does make testable pre-
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Right: Schematic 
showing how a shifter 
circuit eould bring 
misaligned images 
from the eyes into 
proper registration 
in the eortex. The 
luminance peak from 
each eye is shifted 
until both peaks 
stimulate the same 
set of cells (hatched). 
Left: A simple shifter 
circuit. At every level, 
each cell stimulates 
two cells lying in 
opposite directions In 
the level above. The 
shift control suppress
es activity along all 
but one set of paths 
(heavy lines) to align 
the final output 
correctly. 
Below: A simulated 
olfactory-cortex oscil
lation pattern (left to 
right, top to bottom). 
Red regions are most 
activei blue, least. 
The central trace 
shows the simulated 
output from a single 
neuron. 
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dictions. For example, the image-shifting should 
occur as early as possible in the visual pathway. 
and certainly before the images from both eyes 
are fused for depth perception. Van Essen and 
grad students James Fox and Tobias Delbrlick 
are studying the ~ primary visual area, ~ where the 
first stage of visual processing in the cerebral cor
tex occurs, using microelectrodes that can localize 
the source of a nerve impulse to within one-tenth 
of a millimeter. The predicted shifts should be 
up to two or three millimeters, and thus readily 
detectable. Van Essen hopes ro have a prelim
inary result within a year. 'We're seeing some
thing interesting going on. It's nor exactly what 
the original theory suggested, but the visual cor
tex is definitely a more dynamic system than 
people have herecofore appreciated, ~ he says. 

Assistant Professor of Biology James Bower 
is also -reverse engineering ~ the nervous sys
tem-trying CO discover how the brain's complex 
anatomy actually contributes co its complicated 
and subtle computations. His group is exploring 
the olfactory system, which has been mapped in 
considerable detail and contains elaborate hierar
chies of dozens of cell rypes. The group is par
ticularly interested in the contrasts between the 
olfactory system and the more elaborate and 
much more extensively studied visual system, 
which seems to work quite differently. The 
visual system reconStructs the three-dimensional 
world from two cwo-dimensional images, One on 
each retina. Every rerinal cell responds, sending 
impulses to the primary visual cortex, where 
specific cells apparently recognize various atui
butes. Some cells fire , for example, when they 



Right: Coupled 
random oscillator. 
(below) begin to syn
chronize thei, firing 
patterns leolor.) when 
the te xtural fil ter. 
that drive them .,. 
shown a pattern 
(above', 
Below: Baldi (holding 
mous.) and Bhalla 
us. the enclos ur. in 
the background for 
their odor experi
ment •. 

perceive a vertical line, while ochers are triggered 
when an object moves from left ro right. These 
attributes are hypothesized to get combined into 
objects in some complex manner farcher on. But 
an odor has more than three dimensions, says 
Bower. "If you smell an apple pie fresh from 
the oven, your nose is sampling a set of volatile 
chemicals rhat will be subStanrially different from 
the set you'll sample if you smell the same pie 
after it has been sitting in the fridge for twO 

weeks. But ir still smells like apple pie: The 
membrane lining your nose-the epithelium
contains clfaaory recepco[ cells chat recognize 
and respond uniquely to millions of different 
volatile chemicals. The impulses travel to the 
olfaaory bulb, where, insread of a parricular 
neuron responding to ~Iemon" or ~pine ," many 
cells respond in some degree to many different 
Inputs. 

Pierre Baldi (PhD '86) of rhe Lab's theory 
group doubles as a visiting associate in biology, 
and is working with Bower on the mathematical 
theory behind a neural-net classification of odors. 
But Baldi, a theorist wirh degrees in psychology 
and mathematics, believes in gerring his hands 
wet, too. "Biological phenomena are tOO com
plex for an experimentalist to be able to com
municate everything to a theorist," he says. "If 
you rry to be a pure theorist in biology, you' U 
miss the important details." Thus he. grad Stu

dem Upinder Bhalla, and Assisrant Professor of 
Biology Kai Zinn have scarred a ser of behavioral 
experiments with mice. -Rats bite~ mice don't," 
says Bhalla. "Thar's why we chose them: The 
trio are looking for a link berween the olfactory 

system and the immune system. (This isn't so 
farferched. Both systems recognize and respond 
to a bewildering variery of foreign substances, so 
why shouldn't they use similar merhods? After 
all, nature is conservative-a successfu l stratagem 
often reappears elsewhere.) The mice learn co 
push one of twO levers, depending on which 
of twO odors wafts inco their cage. The experi
ments will include normal mice and mice with 
defective T-cell receptOrs, an immune-system 
component that recognizes and binds co foreign 
matter. If the hypothesis is correcc, the immun
odeficient mice shouldn't be able to recognize 
as many odors, and an analysis of whar they 
can't smell may reveal how their olfactOry neu
rons are conneaed. 

Baldi's taking a look ar vision, roo. He and 
Ron Meir, a posrdoc in Hopfield's group, have 

just published a paper describing how the correx 
might use differences in texture to discriminate 
berween an objecr and its background. Their 
simulated neural net, which Meir calls ·semi
biologically possible: is based on a recem Ger
man discovery that groups of neurons in the 
visual cortex fire simultaneously in ~ coherent 
oscillations." These oscillations may be how the 
cortex defines objects-all the neurons respond
ing to fearures that are part of a chair would 
Rash at one rate, while the neurons encoding the 
cat asleep on the chair would Rash at a different 
rate from, or out of phase with, the chair neu
rons-nOt unlike having a video game in your 
head . The model consiscs of a series of filters 
tuned to recognize textural elements-vertical 
bars at a fixed separation, for example-and 
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"We're essen
tially trying 
to ptlt reflexes 
on chips." 

whose outputs drive arrays of coupled oscillators. 
\'Vhen a serial-computer simulation of the 
neural-net model is shown,a texture field-a 
pattern of plus signs on a background of Ls, for 
example-each oscillator begins to take note of 
its neighbors, and they spontaneously synchronize 
over a region corresponding to the pattern. The 
background remains random. 

"These visual-cortex oscillations are very hot 
right now, because they've just been discovered, 
but we've known about them in olfaction for 
about 25 years, and there we think we know 
'.vhat part of the nenvork causes them," says 
Bower. "\'Ve've constructed a biologically realis
tic simulation of that region with some 200 
parameters to it. Pierre is using very abstract 
models, with three or four parameters, that are 
more tractable mathematically-exploring the 
problem unconstrained by biology. The two 
approaches feed into each other." 

Christof Koch, assistant professor of compu
tation and neural systems, and his group have 
been working on another way of seeing things 
for the last four years (see "Computer's Eye 
View," E&5, \'Vinter '88). The group designs 
"early vision" chips that do such basic jobs as 
deciding '.",here an object's edges are, or, by 
calculating how fast those edges are expanding, 
'.vhen a rapidly approaching object will hit. (It's 
up to other, higher brain centers to identify the 
objects and figure out what to do about them.) 
When we look at something, even a boulder 
with a rough, textured surface, we see a uniform 
entiry with distinct edges. These edges are dis
continuities-the different colors of the boulder 
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Seated in the hallway 
outside the eNS lab, 
Koch tries to entice a 
light-seeking dune 
buggy, built by 
Andrew Hsu (IBS '89, 
as his senior project. 

and the grass; the contrast between the sunlit 
rock and its shadow on the ground; or (Look 
out!) the downward motion of the boulder rela
tive to the hillside. Each neuron in the chip 
corresponds to a pixel in a CCD (charge-coupled 
device) camera's visual field. The chip recognizes 
discontinuities-in color, light intensiry, or rela
tive motion, depending on the chip-and turns 
off all the neural connections that span the dis
continuities, creating regions on the chip whose 
sizes and shapes correspond to the objects it 
"sees. 

The group has built three chip generations 
based on this design, which derives from a retina 
chip designed by Mead grad student Michelle 
Mahowald (BS '85) in 1985, and has wired 
them into little vehicles that began life as radio
controlled toys. These seeing-eye dune buggies 
do their off-roading in the corridor outside 
Koch's lab. Although the chips are quite 
small-from 20 X 20 pixels up to 48 X 48 
pixels, compared to some 360,000 in a home 
video camcorder-they can "see» well enough for 
the vehicles to zip along a line of black electrical 
tape on the white-tiled floor, or drive toward a 
flashlight in a darkened hallway. The group 
hopes one day to develop a system smart enough 
to maneuver a vehicle over a three-dimensional 
landscape. ]PL's Brian \'Vilcox, a member of the 
vision-system design team for the proposed Mars 
Rover project, is designing algorithms that recog
nize and avoid obstacles. "We're essentially try
ing to put reflexes on chips," says Koch, "deci
sions that now have to be made by a central pro
cessing unit but that should really be made by a 



A rocky slope as seen 
through Lawton's 
vision algorithms. 
The original scene is 
at the top, followed by 
the set of horizontal 
line segments, the set 
of vertical line seg· 
ments, and then the 
object map at the 
bottom. 

much lower level in the system: 
If the Mars Rover never gets off the ground, 

there are still plenty of applications closer to 
home. Edge-detection chips could double-check 
that a bottling line is really putting two liters of 
soda in every bottle, or see that toilet paper 
winds evenly on the roll. And, realistically, 
"[here's a lot bigger market for toilet paper 
than there is for Mars Rovers," says Koch. 

Teri Lawton, of the Lab's theory group and 
the Mars Rover team, has yet a third perspective 
on vision. Lawton is using Caltech's CNS lab 
facilities to design and test "object-oriented" 
Vision algorithms based on biological neural net
works. Unlike other, pixel-based approaches, 
Lawton's algorithms divide a scene into regions 
with common properties-similar textures and 
gray-scale values, for example. The algorithms 
begin by compensating for the jouncing ride over 
uneven terrain, somewhat as we coordinate our 
eye and head movements to keep the eyes on 
one spot as the head moves. OPL's robotics 
lab developed these pitch-, heading-, and roll
correction algorithms in the 1970s.) The scenes, 
now containing just those differences due to the 
vehicle's real hurizontal motion, pass through 
two sets of filters. One set recognizes horizontal 
and vertical line segments. The other set regis
ters gray-scale brightness. The gray scale auto
matically adjusts itself within shadows-which 
other algorithms perceive as flat, dark objects
to reveal smaller rocks that could wreck a rover. 
The algorithm then defines and remembers ob
jects as two-dimensional closed loops made of 
overlapping line segments of roughly the same 
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General scheme of a 
holographic associa
tive memory. L1 and· 
L2 are lenses. The 
"Phase Conjugating 
Mirror" is used when 
updating the memory. 

Hybrid neural 
nets using elec
tronic logic and 
optical intercon
nects may be 
practical 
shortly. 

gray scale, penciling in obscured line segments 
where necessary. As the rover rolls along, it con
stantly updates its memory. Parallax-how 
much an object moves compared to the rest of 
the scene-gives each object depth, and allows 
the rover to build a three-dimensional picture, or 
"object map," of its surroundings. Because this 
picture includes several sensory dimensions-size, 
position, texture, illumination, gray scale, and 
motion parallax-it's more fault-tolerant than 
object maps depending on one parameter, such 
as edges, alone; and because the algorithm ex
ploits the relative motion of whole objects in suc
cessive images, it handles diverse objects better 
and operates faster than pixel-based methods 
that must compute che change at every pixel 
between successive images. Lawton'S simulations 
take about 12 seconds to generate a depth map, 
much faster than other algorithms, and the chip 
she eventually hopes to build with Mead's group 
should do the same job as quick as a wink. In 
the meantime, Lawton has been working-first 
with Brian Fox, a staff member in Koch's group, 
and now with Aaron Emigh, a senior from UC 
Santa Cruz on campus for the summer as part 
of Caltech's Summer Undergraduate Research 
Fellowship (SURF) program-to optimize the 
algorithm before committing it to silicon. " Cal
tech has made it possible for me to do this 
work: says Lawton. "I couldn't have done it 
otherwise. And it's a contribution to biology as 
well-we can use these three-dimensional terrain 
maps of natural scenes as a test bed to learn how 
the brain generates a three-dimensional world 
view from a two-dimensional retinal image." 

Lawton's work can help the partially sighted 
on Earth as well, especially those people-mostly 
elderly-who can't see fine detail any more. 
Closed-circuit TV "readers" that magnify and 
brighten printed matter are already available. 
Readers modified with one of Lawton's algo
rithms automatically enhance the text to match 
the user's remaining contrast sensitivity, and 
render the text in shades of gray more easily 
perceivable than black and white. Users have 
experienced a two- to fourfold increase in reading 
speed at up to 70 percent less magnification than 
they needed to read text on the old machine. 
Caltech has optioned the patents to the gray 
scale portion of the system, which could be com
mercially available soon. The next logical step, 
electronic spectacles (lightweight, wearable units 
with CCD cameras to look at the world, some 
simple electronics to process the image, and 
liquid-crystal displays-LCDs, the screens used 
in tiny TVs-to present the result) is well within 
the reach of current technology. 
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Pha.se 
Conjuga ting 

Mirror 

Although connections make the net, you 
can't pass wires through each other. Beams of 
light, though, can intersect and carry information 
without interfering with one another. Optics and 
electronics can mate, with LCDs or LEDs (light
emitting diodes) converting electrons into pho
tons, while photovoltaic or photoconductive 
devices convert light back into electriciry. The 
optical equivalents of logical processors are still 
rudimentary, so full-fledged optical computers 
are still a gleam in the eye, but hybrid neural 
nets using electronic logic and optical intercon
nects may be practical shortly. Professor of 
Electrical Engineering Demetri Psaltis, who main
tains an office at JPL and consults there one day 
a week, thinks that "these hybrid systems will 
prove very useful in the next few years. Neural 
nets are ideally suited to coping with the real 
world, in robotic control, for instance. This way 
you can have a very highly interconnected net 
that interprets sensory inputs and passes its con
clusions on to a serial controller that decides 
what to do. And you could have another net 
taking the controller's output to actually guide 
the robot: 

Psaltis's group is working on hybrids. Grad 
student Steven Lin is collaborating with Jae Kim 
of JPL's Microdevices Lab to build neural arrays 
of gallium arsenide, a semiconductor faster than 
silicon that can also emit light. (Both semicon
ductors can be photodetectors.) Each neuron 
incorporates a light detector and a light emitter. 
The emitters shine up from the chip's surface 
into a hologram. The hologram can be two
dimensional-an optical disk, like a CD-or 



Above: A holographic
memory loop. Input 
comes from the far 
right, where the red 
light illuminates a 
transparency, project
ing its pattern into 
one end of a liquid
crystal light valve
the flashlight-shaped 
object at center. A 
laser beam from the 
lower left is reflected 
off the valve's other 
end according to the 
pattern. A cube· 
shaped beam splitter 
diverts the patterned 
beam back to a holo
graphic medium in the 
angle-calibrated 
mounting at rear. The 
hologram's output 
emerges at an angle 
and goes back to the 
light valve's input side 
to complete the feed· 
back loop. Thus the 
light valve acts as the 
set of neurons, using 
an external input and 
the product of its own 
interconnections to 
generate an output. 
The output registers 
on a CCD camera at 
lower left, behind the 
incoming laser beam. 
The rest of the setup 
is used for training 
the memory. 
Left: Arabic and 
Chinese numeral 
input·output pairs 
stored holographi. 
cally. 

a three-dimensional phororefractive crystal. 
(Such a crystal's refractive index- the degree to 
which it bends light-is irself light-sensirive. A 
powerful beam of the righr frequency alrers rhe 
crystal's electronic structure, and thus its refrac
tive index. The change persists after the beam 
is gone.) The chip-ptoduced hologram channels 
light from each emitter to each detector in pro
portion to the connection strength between those 
twO neurons. 

Disks are easier ro work with at the moment, 
the technology being more mature, but they 
aren't really reprogrammable yet. Grad student 
Alan Yamamura is using disks to make a single 
layer of neurons aCt like a multilayer network. 
The disk stores each layer's connection strengths 
sequentiaUy and spins in sync with the informa
tion flow from layer to layer. ]PLer Jeffrey Yu 
(BS '83, MS '84, PhD '88, and a former Stu

dent of Psalris's) is working with Psalris to apply 
this technique to image recognition. 

The crystals are fully reprogrammable and, 
being 3-D, can store information more com
pacdy. A crystal can be loaded holographically, 
for example, so that shining an Arabic numeral 
onto one face causes the corresponding Chinese 
numeral to shine Out from another face. Scien
tists elsewhere have recorded more than 1000 
such associations on a crystal. In theory, a crys
tal can store as many as several thousand images 
per cubic centimeter, versus the tens of thou
sands of images thar would cover a five-inch 
disk. Even when crystal technology matures, 
however, it may nOt displace disks altogether. 
Crystal memories can fade as new memories are 
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ilOur current 
models don't 
allow you to 
remove just 
one association 
without 
affecting all 
the others, but 
animals do it 
all the time. 
It's the only 
way to cope 
with a complex, 
constantly 
changing 
world. " 

stored because each new light beam irradiates the 
entire crystal, partially obliterating its predeces
sors' traces. But a tightly focused laser writes 
memories on a disk with plenty of elbow room 
between them. 

Meanwhile, the connection problem may 
have been solved by Senior Research Fellow in 
Applied Physics Aharon Agranat and grad stu
dent Charles Neugebauer (BS '88) lfl the group 
led by Amnon Yariv, the Myers Professor of 
Electrical Engineering and professor of applied 
physics. They have a chip {hat uses a CCD to 

store connection weighrs-a radical departure 
from its designed use as a light sensor. A row 
and a column of neurons adjoin the CCD, each 
pixel of which contains a dollop of electrons pro
portional to the connection strength between the 
corresponding row neuron and column neuron. 
(See "Photographic Memory: E&S, Winter '88.) 
The current version has 256 neurons, each of 
which connects to the other 255, and a thou
sand-neuron chip is well within reach of standard 
CCD technology. Agranat and Neugebauer are 
now building a computer board that will carry 
the chip and that can be plugged into any 
IBM-PC-compatible computer. Real neural nets, 
instead of just software simulations, will become 
accessible to thousands of researchers. 

Yariv's group began collaborating with 
Barhen's group this year to see how easily their 
hardware and algorithms integrate. Their first 
project will be an algorithm to calculate discrete 
Fourier and Hartley transforms-the two most 
important (and, coincidentally, most computa
tionally intensive) mathematical tools used in 
signal processing. The system could be used 
to process seismic data or hunt for gravitational 
waves, and might also come in handy in JPL's 
image-processing work. 

And then there's robotics. JPL has been 
doing robotics all along, of course-strictly 
speaking, any autonomous spacecraft is a 
robot-but the Lab is also working on more 
traditional robotics problems. Joel Burdick, 
assistant professor of mechanical engineering, is 
starting several collaborations between his gradu
ate students and various robotics groups on Lab. 
One student, Bedri Cetin, is working with Bar
hen to apply neural nets to optimization prob
lems such as making a robot arm move efficient
ly. Cetin developed a new approach to the 
problem, based on recent work by Barhen and 
fellow group members Nikzad Toomarian and 
Michail Zak, that Barhen calls "a major break
through in optimization theory. Everything 
eventually becomes an optimization problem, 
so the payoff will be tremendous." 
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Optimization problems can be thought of as 
rugged landscapes of hills and valleys. Whatever 
the physical aspects of the problem-moving a 
robot arm around obstacles, finding the shortest 
route through 11 cities-the problem can be cast 
as a mathematical landscape (in more than three 
dimensions, if need be), wherein the lowest point 
in the deepest depression is the optimum answer. 
Finding this nadir is the mathematical equivalent 
of setting a boulder loose and waiting for it to 

come to rest. Various strategies, such as drop
ping several boulders all across the landscape, 
have been developed to ensure that you really do 
find the very deepest point. The breakthrough 
incorporates ideas from quantum mechanics-the 
boulder can "tunnel" through a mathematical 
hillside to escape from an exitless valley-and 
from nonlinear dynamic systems theory, wherein 
a newly discovered entity called a "terminal 
repeller" can suddenly give the boulder a shove 
strong enough to send it skittering to anyplace 
in the landscape. "This method has solved some 
standard optimization problems 100 to 1,000 
times faster than the best competing methods," 
says Barhen. "And applying the terminal repel
ler concept to man-made neural nets allows them 
to do things they couldn't do before, like selec
tively forgetting old associations, or spontane
ously creating new ones without extensive train
ing. Our current models don't let you remove 
just one association without affecting all the oth
ers, but animals do it all the time. It's the only 
way to cope with a complex, constantly changing 
world." 

A lot of people are trying to help robots cope 
with the real world. Robots to date have been 
pretty simple-minded creatures. Today's state
of-the-art industrial robot-or spacecraft, for that 
matter-is really more like a complex machine 
tool. It has to have nearly every gesture spelled 
out for it explicitly, and must work in a simple 
environment in which a few known objects 
occupy predetermined locations and everything 
else stays out of the way. But future NASA 
robots, the ones that will go day-tripping across 
other worlds or work on the space station, will 
have to think for themselves and adapt to a 
complex, changeable environment. 

Carl Ruoff, a longtime member of the Lab's 
Robotics and Automation Section and now a 
graduate student at Caltech as well, is working 
with Professor of Mechanical Engineering Fred 
Culick on a rudimentary robotic Little Leaguer 
that can learn basic motor skills on its own in a 
simplified version of such an environment. The 
device will acquire hand-eye coordination: it will 
learn to catch (or hit) any ball-from a golf ball 
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to a beach ball-no matter how the ball is 
thrown. The robot will have to integrate 
artificial-vision data about its surroundings with 
tactile-, force-, and body-sensor data about itself. 
It will learn coordination the way kids do-first 
learning how to coorrol its arm, and how the 
arm should "fee]" in particular situations, then 
learning how the ball behaves. Once the robot 
has watched enough tosses to be able to predict 
their trajectories, it learns to inrercept them. The 
team expects to have a simulation running on 
the JPL-Caitech Cray come August. It's a long 
way from a ball-catching machine to RoboCub. 
But the Little Leaguer, when operational, will 
embody some of the basic attributes that autono
mous space robots will need. 

Burdick, Barhen, Sandeep Gulati (also of the 
theory group), and Robotics and Automation 
Section members Charles Weisbin, Subramanian 
Venkataraman, Guillermo Rodriguez, and 
Hamayoun Seraji (who is also a lecturer in 
mechanical engineering on campus), have started 
an informal collaboration to think about the rest 
of these attributes. "The whole task of integrat
ing all these functions-moror skills, sensory pro
cessing, memo!)', and a host of other things
inro a system that can learn on the job and make 
the internal changes it needs to complete its mis
sion, is extremely ambitious," says Gulati. Adds 
Venkataraman, "It's learning to adapt a mastered 
skill to different environments, unlike today's 
robots that would have to start from scratch 
with every new situation." 

The group has chosen to work on an astro
naut's apprenrice as their demonstration project. 

Astronauts will be spending a lot of time out
doors in the next century, working on the space 
station and making service calls on satellites. 
Hollywood epics notwithstanding, day labor at 
380 miles up is difficult, dangerous, and time
consuming. A buddy can't just toss you a 
Phillips-head screwdriver, for one thing. SO JPL 
envisions self-propelled, voice-controlled robot 
gofers to fetch tools, maneuver bulky parts and 
hold them in position, and rescue free-floating 
objc((s (induding astronauts) before they drift 
away. A helptr taking orders from a human in 
chis sitlutiOfl <Juuall}' LILeS an en\'ironment mor~' 
complex than does a solita!)' explorer picking its 
\'. ay among Martian crevasses {O take rock sam
ples, because the helper has to be aware of many 
"b)Cl tS in three dImensions traveling in all direc
tions at ()11(e, induding unpredictable humans 
that will blunder into its way. 

Such a robot will need all the neural-netvlOrk 
attributes described in this article and then some. 
It will need pattern-recognition skills and a flexi
ble memory to understand spoken commands 
issued by many voices, acute vision and deft 
limbs to execute those commands, and a sophis
ticated "brain" that can plan complex tasks in a 
free-form environment. 

Many years will pass before such a system 
can be built, but the group is planning to take 
the first step. Over the next two years, they pro
pose to deVelop a system that can deal with 
uncerrainty in a limited environment. The 
device, initially nvo robot arms bolted to the 
floor, will grasp one end of some large, perhaps 
flexible, object. A person would hold the other 
end, and a tug-of-war would ensue. The human 
would push and pull on the object, shift grips, 
and sometimes let go altogether. The robot 
would try to keep its end level at all times, 
and would have to adjust its response constantly 
to compensate for the human's actions. 

There's a long way to go before an autono
mous, adaptive robot's gray matter can be crust
ed in space. "Real biological networks have 
much complex internal structure that we don't 
understand," says Ruoff. "Large, complicated 
systems are really qualitatively different," adds 
Culick. "Building lots of little pieces and having 
them all work separately is one thing, and put
ting an integrated system together and making it 
work is quite another. It is, however, something 
that ]PL has learned to do very well." The neu
ral net or hybrid neural-serial system that ulti
mately results-if one does-may finally be the 
mosquiw's intellectual equal. Then it may fairly 
be said that the Caltech-JPL connection will 
have helped neural nets come of age.D-DS 
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