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“An image is just a matrix of numbers encoding color and brightness as a function of x and y,” Perona 

explains.  “How do you extract useful information from that mumbo-jumbo?  It’s not easy.  Think of a TV 

channel that’s been scrambled: the information is all there, but you don’t see anything.”  
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Think how handy it would be to have a com-
puter that could see what you mean.  It could read 
your scrawled notes, or pull complex mathematical  
formulae off a blackboard from the back of the 
lecture hall, or interpret a new valve design as you 
sketch it.  If it could follow gestures, you’d be able  
to manipulate virtual objects without clunky 
gloves, and walk around in virtual environments 
without body-sensing suits.  You might even be 
able to make a sign of displeasure and elicit a 
computer-generated apology, relieving your frus-
tration without the risk of personal injury or hard-
ware damage inherent in smacking your stupid 
machine upside the monitor when it desperately 
needs it.  Pietro Perona, professor of electrical 
engineering and director of Caltech’s Center for 
Neuromorphic Systems Engineering (a National 
Science Foundation Engineering Research Center) 
is working on various aspects of machine vision 
that might lead to such things.  His lab is exploit-
ing the ready availability of cheap video cameras 
and frame grabbers, which convert video footage 
into digital stills, and souped-up PCs that have 
the horsepower to process those images on the fly.  
Much of the lab’s work would have been prohibi-
tively expensive just a few years ago.  

Their research revolves around figuring out what 
computational processes will impart vision to a 
computer.  “An image is just a matrix of numbers 
encoding color and brightness as a function of x 
and y,” Perona explains.  “How do you extract  
useful information from that mumbo-jumbo?   
It’s not easy.  Think of a TV channel that’s been 
scrambled: the information is all there, but you 
don’t see anything.”  Everything looks like that  
to a computer, he says—“cameras are cheap and 
ubiquitous, from automatic bank tellers to freeway 
traffic monitors to your desktop PC; images flood 
the Internet, but they’re ‘consumed’ only by 
humans because, with a few exceptions, nobody 
knows how to write software that will do some-
thing really useful with them.”  And there are 

other reasons to design sensory systems for our  
silicon sidekicks.  Computer chips are shrinking 
but keyboards aren’t—at least, not much—so 
until humans can grow really pointy fingers, 
computers can’t get really small.  “And in order to 
type, or click your mouse, you have to walk up to 
a computer and touch it.  I’d like to be able to deal 
with it from across the room, or wherever I am, as  
we do with people.”  (We also deal with people by  
speaking to them, and there are Caltech people 
working on computers that can hear, but that’s 
another article.)  “So the key to developing truly 
portable computers that we can interact with like 
humans is to replace large, clunky keyboards and 
mice with tiny cameras and microphones.  Given 
this general long-term vision, if you’ll pardon the  
pun, one needs to start somewhere, and that’s 
where we are.”  

Back in 1995, postdoc Enrico Di Bernardo,  
grad student Luis Gonçalves (MS ’92), and Enrico 
Ursella, who was visiting from the University of 
Padua in Italy, built the first one-camera system 
capable of tracking the unrestricted three- 
dimensional movement of a jointed body part— 
an arm—in real time.  (They figured that if they 
could do an arm, a whole-body tracker would 
follow fairly easily.)  Commercial 3-D motion-
capture systems, says Gonçalves, “use multiple 
cameras, which is a lot easier.  The best systems 
cost about $150,000 and use 16 cameras, and the 
subject has to wear reflective markers.  Also, we 
deal with a case where the subject is very close to  
the camera.”  As you reach toward the camera,  
perspective causes your hand and forearm to 
occupy more pixels than your upper arm.  Com-
puters don’t like it when different parts of the 
same object keep changing size in relation to one 
another; other systems work from farther away, 
where the perspective isn’t so pronounced.  There 
are motion-capture systems that don’t rely on  
vision, but you still have to wear something:  
either magnetic sensors, or an exoskeleton—a 

In research that gives a 

whole new meaning to the  

phrase, “Walk this way,” 

grad student Luis  

Gonçalves (inset) donned a  

wet suit and Christmas 

lights for a midnight stroll 

in front of a semicircle of  

video cameras.  As long as  

a light can be seen by at 

least two cameras, its 3-D  

position can be triangu-

lated.  The data was made 

cyberflesh with a rendering 

program called Animation 

 Master (www.hash.com) 

that included a male 

model named Jeff.  Scaling 

Jeff’s bones up by 115  

percent to match the 

lanky Gonçalves and add-

ing markers in the  

appropriate spots turned 

Jeff into virtual Luis.   

Gonçalves and postdoc 

Enrico Di Bernardo then 

wrote a program that took 

the 3-D positions of Luis’s 

lights and posed Jeff to 

make his markers match.

Given a path to follow, Jeff 

now mimics Luis’s walk.

by Douglas L . Smith

The Machine Stares Back 
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fancy knee brace for your whole body, if you 
will—that measures the angles of your joints.  
Any system that requires you to strap on anything 
is invasive, but the Caltech system is noninva-
sive—no markers are required.  “When we started 
this,” Di Bernardo recalls, “there were only three 
other labs in the world working on noninvasive 
systems, and they all used multiple cameras.  And 
now a few other people are developing markerless 
multicamera systems.  But we wanted a user with 
no special equipment to be able to interact with a  
PC, which we assumed would be sold with just 
one camera.”  

As the camera rolls, the computer looks at each 
frame and finds the person by subtracting a back-
ground image shot before the person arrived.  The 
system then uses what’s called a Kalman filter, 
which incorporates a mathematical model of how 
the object is allowed to move, to figure out the 
arm’s position.  “They’re usually used for projec-
tiles—you know the laws of physics, so you can 
estimate a very good trajectory from noisy observa- 
tions,” Gonçalves explains.  (In this case, the 
“noise” includes such things as baggy sleeves that 
mask the arm’s position.)  The Kalman filter also 
enables the system to operate in real time, because 
the computer only examines the part of the image 
where the filter predicts the arm must be—if you 
know the arm is moving up and to the left, for 
example, there’s no point in looking for it in the 
image’s lower right corner.  “We process only 900 
pixels out of 300,000 in the image.” 

In 1995, says Gonçalves, the available biome-
chanical models of human motion “worked under 
limited conditions.  One smooth gesture, say.  Not 
for general movement.”  So the trio created their 
own model that described the relative positions 
and angular velocities of the elbow and shoulder 
joints.  It’s a very simple model—two truncated 
cones with two joints, four rotational degrees of 
freedom, and no hand motion.  It assumed the  
velocities were the same as they had been in the 
previous frame, but it incorporated a random-
velocity component that allowed it to cope with 
speed and direction changes.  (If you change  
direction really violently, it may still lose you.)  

The filter estimates where the arm is and com-
pares the estimate with the image.  The first guess 
is never dead-on, says Di Bernardo, “so the differ-
ence between the two gives you an error measure-
ment.  And you input that error back into the 
model recursively, and it tries to bring the error 
down to zero.”  Adds Gonçalves, “You could have 
an iterative process that keeps repeating until it 
converges to the best pose at each image, but that’s 
not very efficient computationally.  A Kalman 
filter converges over time, but at each image it 
does only one iteration, so you don’t have to do  
a lot of computations.”  The system reliably esti-
mates the arm’s position to within five centimeters 
in all directions, including along the camera’s line 
of sight—the hardest direction to calculate.  

Above: How the computer sees your arm.  Once the back-

ground (which in this case includes the table the person is 

sitting at) has been subtracted out, the computer fuzzes 

the image a bit.  The gradient tells the computer how far 

off it is, minimizing the number of iterations it takes to 

find the arm.  The red lines are the computer’s guess of 

the arm’s position; the computer then samples the image 

at the blue crosses to see how good the alignment is.

Right:  A conceptual rendering of NASA’s Robonaut, which 

may be guided by such software.  Half humanoid, half 

scorpioid, Robonaut’s “stinger” allows it to attach itself to 

sockets in the Space Station’s exterior members or to the 

Space Shuttle’s manipulator arm.  The backpack, which can 

be changed from mission to mission, holds tools and  

accessories (think vacuum-cleaner attachments), and can 

also be used as a mounting point.

Below:  Some Robonaut hardware, like this prototype arm, 

is already taking shape.  
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project.”)  Gonçalves painted a bunch of Ping-
Pong balls fluorescent orange, strapped them on 
Di Bernardo with Velcro, and hit him with a black 
light while shooting video of him reaching to 
different locations.  The duo developed their own 
learning algorithms to look for recurring features 
in those motions and automatically generate a 
model based on those features.  There’s a demo  
on the Web at http://www.vision.caltech. edu:80/
dibe/research/fg98/reach.html.  The demo is just 
white dots on a black background, but if you click 
somewhere nearby, the dots reach for that point in 
an amazingly lifelike manner—looking exactly the 
way someone wearing a collection of fluorescent 
Ping-Pong balls in the dark would.  The shoulders 
and hips twist in counterpoise, the opposite knee 
bends slightly—everything moves, even though 
only the right arm is doing the reaching.  One 
mouse click on the endpoint completely describes 
the motion; the computer does the rest.  (It’s a 
tribute to our own visual systems that we can  
see these animated constellations of dots—called 
Johannson displays—as humans in motion.   
Grad student Yang Song is trying to develop  
software that will automatically interpret  
Johannson displays.  “We think we’ll be able  
to extend whatever algorithms we find to the 
problem of interpreting people moving,” says 
Perona, allowing the Ping-Pong balls or other 
markers to be dispensed with.) 

The model rendered Di Bernardo in two dimen- 
sions, the way the camera saw him.  In order to  
graduate to 3-D, the duo used four cameras, 
decked Gonçalves with Christmas lights, and 
made a video of him walking around the room.  
Recalls Di Bernardo, “We’d kick everybody out  
for the night, move all the furniture, clean up the 
area, take down the divider, and basically take over 
the lab.”  

The walking-around model in its most basic 
form is a stick figure with a flat, triangular head 
that looks like a bipedal praying mantis, so they 
fleshed it out with some off-the-shelf animation 
software.  In either case, the model stands in a 
box representing the room.  You click on the floor 
wherever you want to step, rather like those learn-
to-dance diagrams, and the model walks in your 
footsteps.  Or rather, it plods dispiritedly—not 
only does it capture Gonçalves’s gait, its posture 
conveys his emotional state as well.  “That’s exact-
ly how I was feeling,” he says.  “It was three in the 
morning.  I walked back and forth for a couple of 
hours with those markers.”  Wondering how much 
nuance was available, they went back and tried it 
again.  “So the original walk was me dying and 
walking at the same time, and then another night, 
I pretended I was happy.  It learned the happy 
walk, too, and you can see the difference.”  At  
this point, the duo realized that they had stumbled 
across an excellent way to create realistic motions 
for a variety of purposes, and incorporating the 
model into the whole-body tracking system got 

Based on this work, the Perona lab is contract-
ing with JPL to provide the “front end” of a vision- 
based control system that may be used for Robo-
naut, a humanoid (from the waist up) robot that 
NASA is developing to help build the space sta-
tion.  Robonaut is designed to cut down on human 
spacewalks—it will mimic the movements made 
by an operator aboard the space shuttle, panto-
miming for a camera.  So as the operator tightens  
a virtual pipe with a virtual wrench, or whatever, 
Robonaut will tighten the real thing.  (A pair of 
TV cameras in Robonaut’s head will allow the  
operator to see what Robonaut is doing.)  Says 
Gonçalves, “NASA didn’t want any electromag-
netic sensors, because of the potential for interfer-
ence with other shuttle systems.”  “They really  
like the camera-based solution,” Di Bernardo adds.  

Having demonstrated that they could capture 3-
D arm motion without tracking specific features, 
the research group was ready to take on the whole 
body.  This was a far more ambitious project—
there were 14 major joints (not counting fingers 
and toes), more than 50 degrees of freedom, and an 
assortment of shapes to contend with.  Meanwhile, 
computer animation had made great strides, and 
fully jointed human models had become available  
in commercial graphics packages.  But these  
models didn’t help the Kalman filter decide where 
to look, says Gonçalves.  “The models are very 
good anatomically—the geometry of the skeleton, 
the range of motion of the joints, the appearance of 
the surface—but they’re static.  There’s no model 
for how people move, no synchrony of all the 
parts.  Either a human animator draws a series of 
intermediate poses, or the model takes data from a 
motion-capture system with markers.  The model 
doesn’t generate the motion.”  

So in order to acquire information for a lifelike 
motion model, Di Bernardo and Gonçalves went 
back to using markers.  (Di Bernardo notes wryly, 
“If we had a noninvasive system that could capture 
whole-body motion, we wouldn’t have to do this 

“The original walk was me dying and walking at the same time, and then an-

other night, I pretended I was happy.  It learned the happy walk, too, and you 

can see the difference.”  
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shelved in preference to exploring the model.  
“We still haven’t figured out the general model 

for all motions,” says Di Bernardo.  “We just have 
models for particular classes of motions.”  Adds 
Gonçalves, “But we can apply our algorithms to  
learn any action we want—to act like certain 
people, or act happy, or drunk, or whatever.”   
Gonçalves is graduating soon, so the pair are  
forming a company, called realMOVES, to animate 
joystick-driven characters for the video-game  
industry.  Response from game developers is 
enthusiastic, says Gonçalves.  “They said they had 
never seen something that was computer-gener-
ated and interactive look so realistic.”  The duo  
is off to a good start—they shared first place (and 
won $10,000 in seed money) in the second annual 
10K Business Plan Competition, run by Caltech’s 
Industrial Relations Center.

Let’s shift our focus to the hand.  We often pick 
up a pen in order to convey our thoughts, so why 
not let the computer watch as we write?  Grad  
student Mario Munich (MS ’94) is taking a real-
time look at handwriting.  Current systems are 
touch-based, like palmtop computers or the elec-
tronic pads at some stores that allow you to sign 
for a credit-card purchase electronically.  (You’ll 
notice, however, that the clerk still compares your  
signature to the one on the back of the card.)  
There are other systems that look at handwrit-
ing—such as the zip-code scanners the post office 
uses—but they work after the fact, looking at 
writing that’s already been written.  Says Munich, 

“Ours is the only camera-based system I know of 
that looks at writing as it’s being generated.  You 
could write on ordinary paper while the camera 
watches, and then throw the paper away.  And 
cameras can be really small.  You could have a tiny 
camera on a wire connected to a credit-card-sized 
computer.  It would be great for airplanes—you’d 
clip the camera onto the seat-back in front of you, 
and use the tray table for a desk.  It allows for full 
pen-based interaction with the computer, just as 
you would with a mouse and keyboard.”  While 
collaborators at Bielefeld University in Germany 
are working on actually reading free-form pen-
manship (palmtops are still in kindergarten; they 
can’t read cursive script), Munich is working on 
the underlying problem of seeing the writing.  

The basic idea is simple.  You poise the pen over 
a predesignated point on the paper for a second or 
two, to give the computer a chance to find the pen 
tip.  (It’s kind of like going to the inkwell before 
beginning to write with a quill.  In fact, a future 
version of the system will project an inkwell icon 
onto the paper, and you’ll “dip” into the inkwell to 
start.)  The machine beeps when it’s ready, and  
off you go.  The computer subtracts out the back- 
ground paper to create an internal model of what 
the tip looks like, which it uses to hunt for the tip  
in subsequent frames.  Munich wrote software to 
measure the tip’s position, velocity, and accelera-
tion, and uses another Kalman filter to predict 
where the tip will turn up next.  Again, the  
system only processes the part of the image it 
knows the tip will be in, allowing it to run in real 
time.  The computer takes a second look once the 
pen has moved on, to see if it left a mark.  If so, 
the computer records a “pen-down” stroke (the 
pen was touching the paper); if not, it’s a “pen-up” 
stroke that the reading program can ignore.  

The pen-tip position, velocity, and acceleration  
data is a mathematical description of a curve, 
which can be matched against other curves, and 
Munich realized that he had an ideal system for 
automatic signature verification—a hot technol-
ogy although not, as we have seen, a mature one.  
A machine match isn’t yet legal in court, for 
example; but then, DNA evidence has had a pretty 
rocky road, too.  So he modified a popular signal-
matching algorithm called dynamic time warping 
to compensate for the data being offset in time, 
meaning that the points from one signature usual-
ly lie between the points from the other—for 
example, the first set might catch a cursive “l” at 
the top and bottom of the loop, while the second 
set might catch the midpoints of the ascending 
and descending strokes.  (The system runs at 60 
frames per second, so the gaps between the points 
aren’t that big, but you get the idea.)  He then 
wrote software to decide if the aligned signatures 
were close enough to constitute a match, develop-
ing more mathematical improvements en route.  

“The hardest part was actually collecting 
enough examples to train the system,” says 

Left:  Two examples of 

Munich’s signature (top).  

If you track the pen’s 

vertical motion over time 

(center), you get this plot.  

Dynamic time warping 

(bottom) lines the curves 

up by squishing or  

stretching the time axis as 

needed at each instant to 

get the best match.  The 

system then measures the  

vertical displacement 

between the two traces, 

point by point, to decide if  

they are the same.  (In 

practice, a reference 

signature is derived from 

compositing several  

examples.)

Right:  The same applies to  

the pen’s horizontal  

movements.time

time time

time
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sider a security camera scanning a crowded depart-
ment store at Christmas.  Can a computer pull the  
faces out of the milling crowd, the shifting piles of  
merchandise, the flashing lights, the gently  
swaying swags of tinsel, and so on?  Only then 
does it make sense to ask if the computer can say, 
“Hey!  That guy’s a known shoplifter!”  Volumes 
have been written about face recognition, but in  
its most general form it remains an unsolved  
problem.  Besides the usual lighting and perspec-
tive troubles that any object-recognition system is  
heir to, faces are infinitely variable—not only from 
person to person, but from minute to minute.  
(Watch a two-year-old making faces in the mirror 
some time.)  So some systems look for very low-
level features—the < at the corner of the eye, for 
example—and measure the distances to other such 
features.  A set of readings that matches average 
distances on real faces is declared to be a face.  
Other systems take a high-level approach by  
looking at all the pixels at once and matching 
them against a stored gallery of faces.  

Mike Burl (BS ’87, MS ’92, PhD ’97), now at 
JPL; Thomas Leung (BS ’94), now at UC Berkeley  
working with Perona’s thesis advisor, Jitendra 
Malik; and grad student Markus Weber have 
developed a system that combines the best of both 
approaches.  Their system has a set of high-level 
feature detectors that independently hunt for such 
things as the eyes, or the tip of the nose, or the 
corners of the mouth.  Each detector marks all the 
spots that it thinks could be its feature, and the 
candidates are then combined in groups to see how 
they fit.  “It starts by looking at the features a pair 
at a time,” Burl explains.  “Given a pair of fea-
tures, it knows where to expect the other ones.  So 
given a potential right eye and a potential left eye, 
it searches an ellipse between and below them for a 
potential nose, and so on.”  If everything falls into 
place, it’s probably found a face; if not, it probably 
hasn’t.  

Above:  Four out of five ain’t bad.  The computer can still 

find Burl’s face, even with one eye hidden.   

Munich.  “Normally, you’d like to have dozens of 
signatures per person, but there’s a limit to how 
many times you can get your labmates, or someone 
applying for a credit card, to sign their names for 
you.  I only got maybe 10 signatures each.”  But 
he noticed that no two of them were quite the 
same size, or at quite the same angle, so he was 
able to generate more by slightly rotating or  
resizing the ones he had.  He could even squash 
them sideways a bit, as if turning a rectangle into  
a parallelogram.  He used the same strategy to 
evaluate the system’s performance, bulking up the 
number of real signatures and forgeries until there 
were enough different samples to be statistically 
meaningful.  

It turns out that for signature verification, it 
doesn’t matter whether the pen is touching the  
paper.  We sign our names so often that it’s auto-
matic—a single gesture from start to flourish, 
what a biomechanician would call a ballistic move-
ment.  Half the time we’re not even looking.  Con-
sequently, the pen-up strokes are just as consistent 
as the pen-down strokes—and a lot harder to coun-
terfeit.  Says Munich, “You can sit and practice a 
signature from an example, drawing it over and 
over slowly and carefully, but how are you going to 
practice the strokes that aren’t recorded?”  Leaving  
aside such obvious gaffes as dotting the wrong “i” 
first, there’s the question of rhythm.  Since the 
computer is recording the pen’s speed as well as its  
path, the forger would have to perform in sync 
with the victim.  (Imagine a pair of ice dancers en 
duet in separate TV studios, to be composited on 
videotape later.)  “Many other systems use only the  
pen-down strokes, so we showed that the full 
trajectory had a comparable, if not better, perfor-
mance,” says Munich.  

But the simplest ID-verification system might 
be staring you in the face—can a computer know 
you by sight?  Actually, this is really the second of 
two questions, with the first being, can a computer  
figure out for itself that it’s looking at a face?  Con- 

Above:  In this shot of 

Perona’s face, the circles 

mark all the features the 

computer thinks could be 

eyes, the +’es are nostrils, 

and the X’es are nose tips.   

The computer picks a pair  

of eye candidates (the  

correct one, as it happens), 

 and searches the central  

ellipse for a nose tip and  

the side ellipses for  

nostrils.  
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That word “probably” is the key.  Other systems 
make “hard” detections—either something is an 
eye corner, or it isn’t.  This system gives “soft” 
detections, saying, “Gee, this looks pretty eye-
like—I’ll say 80 percent odds.”  This is a lot more 
error-tolerant, as a set of features that didn’t score 
well individually but are correctly positioned can 
outscore one really good eye that doesn’t go with 
anything else.  And if the machine finds a few  
features it likes really well, it will forgive the 
absence of the others.  Thus when Burl covered his 
mouth with his hand, or tilted a bicycle helmet 
over one eye, it still picked him out amid the lab’s 
background clutter.  

The current version runs on a PC at five frames 
per second, says Weber.  “So every one-fifth of a  
second, it will find your face.  At that rate, it can  
follow you around.  If the system took half a min-
ute to find you, you might be long gone before it 
decided you were there.”  This is not only impor- 
tant for security applications, but for fancier  
notions still to come—if somebody does build an 
emotion recognizer, for example, it will probably 
be a computation hog.  But if the face recognizer 
found the face first, and then presented to the 
emotion recognizer just that part of the screen 
containing the face (which might only be 10  
percent of the image), the emotion recognizer 
could run much faster because it wouldn’t be  
wasting processing time on extraneous pixels.  

Weber and postdoc Max Welling are now mov-
ing on to more general issues.  Rather than show-
ing a feature detector 100 eyes, and saying, “Look 
for these,” Weber is showing the computer whole 
faces and letting it decide what’s important, using 
a statistical method of estimating probability den-
sities.  The computer’s choices may not be what 
we humans perceive as essential to “faceness,” but 
by discovering what the computer looks for on its 
own, Weber hopes to create generic detectors that 
could be used by anybody to find anything.  “You 
don’t want to have eye-detectors and wheel- 

detectors programmed in,” he says, “just for the 
possibility that you might be asked to recognize 
faces or cars, because then you would have to have 
millions of detectors.”  The latest work in the 
Perona lab goes straight into the curriculum—
Weber is the teaching assistant for EE/CNS 148, 
Topics in Computational Vision, which this year is 
covering visual recognition.  

At JPL, Burl is developing software to look for 
and catalog geologic features, such as craters and 
volcanoes, on Venus, Mars, and elsewhere.  At the 
moment, the software is like an intelligent assist-
ant that can help a human geologist comb through 
archived images, but Burl would like it to mature 
to where it could actually fly on a spacecraft, pick- 
ing targets for other instruments.  “Eventually, 
we’d like to go beyond ‘recognizers’ attuned to 
specific objects to ‘discoverers’ that can decide on 
their own when something looks interesting,” he  
says.  “For example, we might be able to find 
localized features that are distinct from the rest of 
the image in some way.  When Voyager flew by 
Neptune’s moon Triton, it took human interpret-
ers to discover the ice geysers, something never 
before seen in the solar system.  But it took four 
hours for the images to reach Earth, and it would 
have taken another four to send a command back 
to Voyager.  Triton would have been a speck in the  
rearview mirror by then.  So an algorithm that 
could automatically discover such features and 
refocus the spacecraft’s attention on them would 
open up all sorts of scientific opportunities.  The 
discovery idea ties back in with the issue of what 
features are important. If you looked at a lot of 
faces, you might decide that eyes are interesting, 
because they are distinctive, localized, and recur  
in many images.  If you looked at a lot of planets, 
you might decide the same thing about craters.”  

A spacecraft searching for interesting features  
on alien worlds also has to figure out where in the 
world those features are, so that they can be found 
again on the next orbit.  Stefano Soatto (MS ’93, 

Above:  Craters may be the  

most prevalent feature in 

the solar system.  They 

provide planetary  

geologists with important  

clues about a body’s 

surface age, collisional 

history, and subsurface 

structure.  Unfortunately, 

labeling craters by hand is  

slow, tedious, and  

sometimes even controver-

sial.  To help automate the  

process and provide an  

objective standard, Burl  

and colleagues are  

developing Diamond Eye, 

a Web-based tool that 

enables users to look for a 

variety of objects in large 

collections of images.  In 

this Viking image of Mars, 

Diamond Eye has marked 

prospective craters for 

human verification.  Initial 

results are promising, but  

the system is still in  

development. 

Right:  Comet Halley’s 

nucleus, as seen by the 

Giotto spacecraft.  This is 

the closest view we’ve ever 

gotten of a comet.  
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PhD ’96) started the project in collaboration with 
Ruggero Frezza of the University of Padua, and 
grad students Jean-Yves Bouguet (MS ’94, PhD 
’99) and Xiaolin Feng (MS ’96) are carrying it on, 
working with JPL’s Larry Matthies and Andrew 
Johnson.  Their software package is slated to fly on 
JPL’s Deep Space 4/Champollion mission, which is  
to launch in 2003 and deploy a sample-drilling 
lander on a comet named Tempel 1 in 2006.  In 
order to steer to a soft landing on a distant comet, 
says Bouguet, “the response time has to be truly 
fast.  We need an autonomous navigation system, 
because we cannot rely on control from Earth.  
And we need a lot of dynamic information: how 
fast we’re going, how fast the comet is rotating, 
where the landmarks are, and the landing sites.”  

So the question is, if you shoot a movie as you 
fly by a rock (in their experiments), can you recon-
struct its three-dimensional shape using only the 
information in those pictures?  Geometrically, this  
is basic triangulation, and so-called shape-from-
motion estimators have been around since the  
early 1980s.  But there are two problems to be 
solved before you can triangulate.  The first is to 
figure out how to select landmarks to use as refer-
ence points.  Bouguet developed software that 
gives each new frame a quick once-over, chooses 
surface details that it thinks it can follow, and 
tracks them automatically thereafter.  The second 
is that, although you know the spacecraft’s motion 
in relation to the solar system, you don’t know 
how the comet and the spacecraft are moving 
relative to one another.  The comet is probably 
tumbling in some weird way, so your landmarks 
(and your landing site) will appear to be gyrating  
wildly.  So he wrote a program to extract the 
comet’s motion (also of keen interest to a lander) 
from the collective paths of the landmarks, and 
then another program to find the 3-D structure 
from the computed motion.  

But a small, slow-moving object seen close-up 
looks exactly like an object twice as big and twice 

Left:  A rotating, basketball-sized rock glued to a dowel 

stands in for Comet Tempel 1.  A typical spacecraft’s-eye 

view is seen in the top picture.  In the middle picture, the 

the computer-selected landmarks are shown as red crosses; 

the yellow trails are the landmarks’ motions since the  

previous frame.  Plotting the landmarks as a 3-D mesh 

gives the reconstruction shown at bottom.  A video  

showing just the moving points on a black background 

gives a very convincing illusion of depth, and can be found 

at http://www.vision.caltech.edu:80/bouguetj/Motion/ 

comet.html. 

Above:  A frame from the video (available at http://www.vision.caltech.edu:80/bouguetj/ 

Motion/navigation.html) Bouguet shot while navigating the Beckman Institute.  The blank 

walls punctuated by occasional doorways and bulletin boards didn’t give the computer  

much to work with, so he printed fat black borders on a couple thousand sheets of paper, 

which he taped to the walls as landmarks.

Below:  In the computer reconstruction of the cart’s course, the red dots are the landmarks  

and the blue line is the cart’s calculated path.  The scale is arbitrary: five units equals about 

two meters.  Removing the constraint that the motion must be planar (inset) reveals the 

cumulative errors and turns the lap around the hall into a climb on a spiral staircase.    

As E&S was on 
press, NASA can-
celed Deep Space 
4/Champollion due  
to cost overruns in 
other missions.  
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as far away moving twice as fast, so Champollion  
will have accelerometers and range finders as 
secondary systems.  And as the image sequence 
gets longer and the landmarks are replaced by new 
ones, cumulative errors creep in.  Most researchers 
finesse this by using one set of landmarks visible 
throughout the sequence—an impossible feat for 
an opaque object rotating through 360 degrees.  
Bouguet got a dramatic demonstration of this 
problem early on, when he shot a video while 
riding a cart pushed at a brisk walk by Gonçalves 
and Ursella through the basement corridors of the 
Beckman Institute.  The Beckman Institute is a 
hollow square, with level hallways, but the com-
puter reconstructed a rectangular spiral in which 
the cart rose some six meters over its hundred- 
meter journey.  Bouguet remained unfazed—“I 
was using a model with as few constraints as  
possible, so I was not explicitly forcing the motion 
to be planar.  So in my thesis, I propose that M. C. 
Escher must have designed the building.”  

In the consumer marketplace, these algorithms 
could add a whole new dimension, as it were, to 
home movies—you could plug the vacation video-
tape you shot in Venice into your computer, and 
have it reconstruct a 3-D model of the town that 
your friends could stroll through.  Or you could 
take a scene from your favorite movie, reconstruct 
it in 3-D, and view it from different angles.  Add 
body-tracking software, and you could even insert 
yourself into your favorite flick.  

Bouguet continued to refine the navigation  
system, but on March 6, 1997, something else 
happened.  He was the teaching assistant for EE/
CNS 148, which that year covered the burgeoning 
field of 3-D photography.  Besides picking landing  
sites on comets, there are lots of reasons for want-
ing a 3-D representation of an actual object in 
your computer.  For example, the new Star Wars 
movie, The Phantom Menace, contains dozens of 
digitally generated aliens, many if not all of whom 
started as 3-D scans of people.  Now when George 
Lucas scans someone, it’s several steps up from 
pressing your face against the glass of that little 
flatbed scanner in your office.  These scanners cost  
from fourteen thousand to several hundred thou- 
sand dollars, and, in general, use motorized plat-
forms that move very precisely through the beam 
of a laser striper, while a camera records how the 
stripe plays over the object’s surface.  “There are 
many different types of systems,” says Bouguet, 
“and there are books on the technique of active 
lighting, as it’s called.”  EE/CNS 148 wasn’t quite  
so high-tech: the class used a liquid-crystal display 
projector—an overhead projector for your com-
puter screen, essentially—to cast a computer- 
controlled pattern of parallel lines.  But projectors 
cost money, and you can get a shadow for free.  In 
an informal meeting on the afternoon of Bouguet’s 
PhD candidacy exam, Perona “mentioned the idea 
of waving a pencil to cast a shadow,” Bouguet 
recalls, “and I saw immediately the geometry of 

Above:  How to get more 3-D information than you can 

shake a stick at.  The light bulb, the ruler, and its shadow 

all lie in the same plane (green triangle).  The red rectangle  

is the image plane that the camera sees, so tracing a ray 

(blue) from the camera back through any point on the 

shadow’s edge in the image plane will lead to the  

corresponding point on the original object.  If the positions 

of the light bulb and the tabletop are known, finding the 

shadow’s location on the tabletop nails down the plane of  

the green triangle and thus fixes the three-dimensional 

coordinates of the point where the blue ray intersects it.  

Right:  In computational terms, the system measures the 

brightness of each pixel over time (top), finds the  

maximum and minimum brightness, calculates the  

midpoint, and notes the frame number where the  

brightness descends below it.  The system then pulls up the  

corresponding frame (bottom) to find the position of the 

shadow’s edge on the tabletop.  The column number of the 

pixel where the brightness drops gives the edge point’s x 

coordinate; the y coordinate is set by whether the  

computer is looking at the top or bottom row.  A complete 

description of the project can be found at http:// 

www.vision.caltech.edu:80/bouguetj/ICCV98/.index.html.   
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reconstruction.  Basically, everything came as a 
flash of inspiration.”  

You literally just set the object on a table and 
wave your magic wand so it casts its shadow across  
the object.  A few passes gives you a decent picture  
that, on closer inspection, is as cratered as any 
comet.  But the more passes you make, the 
smoother the picture gets.  And you can change 
the wand’s angle, direction, and speed, or make 
extra passes over tricky details—as long as both 
ends of the shadow fall on the desk, the system 
will work.  Scanners need accurate (and expensive) 
motion control to define the relative positions of 
the camera and the object, but Bouguet exploits 
Euclid instead.  The lamp, the stick, and the  
shadow all lie in a plane that intersects the 
tabletop.  Thus the difference between where the 
shadow lies on the object and where it would have 
fallen in the background provides the depth.  

So the computer scans the top and bottom row 
of pixels in each frame to find the shadow’s leading 
edge in the background at that instant.  Another 
part of the system tracks each pixel individually to  
see when it turns from light to dark, meaning that 
the shadow has just reached it.  The system notes 
the time, looks up the background shadow points 
in the corresponding frame, and triangulates where 
the suddenly overcast pixel is.  Standard methods 
for finding shadows (and other edges) look for 
abrupt changes between the relative brightness 
of all pairs of pixels within a set distance of each 
other, which takes tons of processing time and can 
be thrown off by surficial color changes or bright-
ness changes, among other things.  But here, says 
Bouguet, “Each pixel raises its hand, saying, ‘I see 
the edge now!  Compute me!’  And time is insen-
sitive to variations in the scene.”  (He later learned 
that Brian Curless and Marc Levoy at Stanford had 
proved this mathematically two years earlier.)  

A line and a point define a plane, so you need to 
know where the lamp is.  Bouguet uses what he 

calls the Inverse Thales Experiment, explaining, 
“Thales assumed that the light came from a known 
direction, and wanted to measure the height of a 
pyramid by comparing its shadow to that of a man 
of known height; we start with a known height—a 
pencil—and want to locate the light source.  And 
if we do this several times while moving the pencil 
around, it gives us several lines that converge back 
at the lamp.”  

A newer version doesn’t even care where the 
lamp is.  If a shadow falls on two perpendicular 
planes—say the table and the wall behind it—the 
light source can be derived from that information 
alone.  (Two lines may also determine a plane.)  
You can scan really big objects outdoors, using  
the sun, as Bouguet demonstrated by scanning 
Perona’s car in front of a handy wall.  It doesn’t 
even matter that the sun moves, because each 
frame stands on its own.  “If you’re lazy,” says 
Bouguet, “you could drive a stick in the ground, 
or even use the shadow of a building, and wait for 
the shadow to move across the scene.”  

The method isn’t perfect.  It can’t handle black 
surfaces, such as Perona’s tires, or shiny surfaces, 
like his windshield, which reflect rather than 
scatter light—but then, neither will most laser 
systems.  (It does handle nubbly textures much 
better than the lasers, which require fairly smooth 
surfaces.)  And it only sees what’s lit, so areas that 
are in shadow the whole time don’t show up.  Nor 
does the object’s back.  “That’s where active light-
ing is better,” Bouguet admits, “because you can 
see the object from all angles.  We could merge 
several scans from different viewpoints to get a 
complete 3-D model with no shadow gaps, but 
there’s still significant work to be done in making 
sure that the errors don’t accumulate and globally  
deform the structure,” the way the Beckman  
Institute hallway became a spiral staircase.  But for  
many home-computer and Web uses, getting 3-D 
scans for free sure beats buying one of those fancy 
systems.  The process has been patented, and—
surprise!—a company is interested.  

But Perona’s vision of machine vision goes  
beyond computers per se—anything with a chip  
in it is fair game.  He foresees “toys that recognize  
the child that owns them and are able to play 
hide-and-seek with her, and washing machines 
that start when we leave the room and quiet  
down when we come back so as not to disturb us.”  
He then adds a more serious note.  If all cameras 
become “smart,” are we on our way to a world 
where a citizen’s every move will be tracked auto-
matically, as George Orwell predicted in 1984?  
“The technology to do so will certainly be in  
place soon, so we as a democratic society had  
better start thinking about how we plan to 
regulate what can be done with that information.  
Being able to interact with a vision-based com-
puter as if it were another human being has a lot 
of advantages; we just have to make sure that they 
aren’t misused.” ■

Above:  This 3-D recon-

struction of a plaster 

cherub took just one pass 

to generate.  

Below:  Perona’s car.




