
M ODERN PHYSICS RESEARCH is concerned 
increasing1y with comple~ systems com­

posed of many interacting components - the 
many atoms making up a solid, the many 
stars in a galaxy, or the many values of a field 
in space-time describing an elementary parti­
cle. In most of these cases, although we 
might know the simple general laws govern­
ing the interactions between the components, 
it is difficult to predict or understand qualita­
tively new phenomena that can arise solely 
from the complexity of the problem. General 
insights in this regard are difficult, and the 
analytical pencil-and-paper approach that has 
served physics so well in the past quickly 
reaches its limits. Numerical simulations are 
therefore essential to further understanding, 
and computcrs and computing playa central 
role in much of modern research. 

Using a computer to model physical sys­
tems is, at its best, more art than science. 
The successful computational physicist is not 
a blind number-cruncher, but rather exploits 
the numerical power of the computer through 
a mix of numerical analysis, analytical 
models, and programing to solve otherwise 
intractable problems. It is a skill that can be 
acquired and refined - knowing how to set 
up the simulation, what numerical methods 
to employ, how to implement them effi­
ciently, when to trust the accuracy of the 
results. 

Despite its importance, computational 
physics has largely been neglected in the stan­
dard university physics curriculum. In part, 
this is because it requires balanced integration 
of three commonly disjoint disciplines: phys­
ics, numerical analysis, and computer pro­
graming. The lack of computing hardware 
suitable for a teaching situation has also been 
a factor. Students usually acquire what skills 
they do have by working on specific thesis 
problems, and as a result their exposure is 
often far from complete. 

This situation and my professional back­
ground in large-scale numerical simulations 
motivated me to begin teaching an advanced 
computational physics laboratory course at 
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Caltech in the winter of 1983. My goal was 
to provide students with direct experience in 
modeling non-trivial physical systems and to 
impart to them the minimal set of techniques 
for dealing with the most common problems 
encountered in such work. The computer 
was to be viewed neither as a "black box" nor 
as an end in itself but rather as a tool for get­
ting at the physics. 

Another factor in my decision to develop 
a computational physics curriculum was the 
ready availability of hardware that could pro-
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Computational Physics 
curriculum 

Unit Numerical Methods Example Project 

Differentiation. qua­
drature. finding roots 

Semiclassical quantization 
of molecular vibrations 

Scattering a 
central potentia! 

2 Ordinary differen­
tial equations 

Order and chaos in 
two-dimensional motion 

Structure of white 
dwarf stars 

3 Boundary value and 
eigenvalue problems the om~-d:lm(~nS:lona! 

Schrodinger equation 

Atomic structure in the 
Hartree-Fock approximation 

4 functions and 
quadrature 

Born and eikonal approxima­
tions to quantum scattering 

Partial wave solution of 
quantum scattering 

5 Matrix inversion and 
diagonalization 

Determining nuclear 
charge densities 

A schematic shell model 

6 Laplace's equation 
in two dimensions two lim1pn<J()11, 

The time-dependent 
Schrodinger equation 

Self-organization in 
chemical reactions 

Ii, Monte Carlo methods The Ising model in 
dimensions 

Monte Carlo simula­
the hydrogen molecule 

vide each student with an individual comput­
ing environment. Personal computers can be 
used easily and interactively through a variety 
of high-level languages, and they offer a 
numerical power sufficient for illustrating 
many research-level calculations. Moreover, 
the graphics facilities commonly found on 
such systems allow an easy but often startling 
insight into many problems. In short, I (and 
the students) could concentrate on the strat­
egy of a calculation and the analysis of its 
results, rather than on the mechanics of using 
a computer. 

How, then, was I to teach the art of com­
putational physics? I quickly decided that the 
traditionallecture-cum-assignment approach 
was not optimal, as there is no teacher better 
than direct experience and computing is a 
very personal activity for most physicists. I 
therefore planned a situation where students 
would work through material on the com­
puter that would teach by example and exer­
cise. This format had the added benefit that 
students could work largely on their own, at 
their own pace, and at times of their 
choosing. 

In defining the course, it was relatively 

easy to identify the broadly applicable numer­
ical methods I wanted to cover, but choosing 
the physical situations in which to demon­
strate these methods was more difficult. I 
attempted to satisfy simultaneously the cri­
teria that the physics discussed be an "inter­
esting" extension or enrichment of the usual 
quantum, statistical, or classical mechanics 
material, that the scale of the computation be 
appropriate to the numerical power of the 
hardware, and that the problem not be solu­
ble analytically. In the end, I was able to find 
16 such case studies. In more than half of 
them the student can compare calculated 
results with experiment or observations. 

The curriculum I developed during the 
1983 and 1984 academic years consists of 
eight units. The student begins each by read­
ing a text section that gives a heuristic discus­
sion of several related techniques for accom­
plishing a particular numerical task. Intuitive 
derivations of simple, general methods are 
emphasized, with appropriate references cited 
for rigorous proofs or more specialized tech­
niques. Short, mathematically oriented exer­
cises involving only a small amount of pro­
graming reinforce this material. 
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After reading the text section, the· student 
works through . the remaining two sections of 
the unit ~ the example and the project. 
Each of th~se is a brief exposition of a partic­
ular physical situation and how it is to be 
modeled, using the numerical techniques 
taught in that unit together with a set of exer­
cises for exploiting and understanding the 
associated program. The example and project 
differ only in that I expected the students to 
use the canned program for the former, while 
perhaps writing their own program from 
scratch for the latter. 

Each of the programs I developed func­
tions in several capacities - as an easy-to-use 
demonstration of the physics, as a laboratory 
for exploring changes in the numerical algo­
rithms or parameters, and, in the case of the 
projects, as a model for the student's own 
program. Thus, more than simply working 
correctly, the programs had to be easily read 
and understood. Simple organization, full 
documentation, and a structured programing 
style were essential. As much of each pro­
gram tends to be input/output (I/O) and 
"bookkeeping," the few important numerical 
sections had to be called out clearly and I 
often had to sacrifice elegance in coding and 
speed of execution for the sake of intelligibil­
ity. More significantly, my ambitions were 
restrained frequently by a desire to keep the 
calculation and graphics displays simple. De­
spite these constraints, with some thought 
and care I was able to work to my satisfaction 
within the format described. 

The choice of Janguage invariably invokes 
strong feelings among scientists who use com­
puters. Any language is, after all, only a 
means of expressing the concepts underlying 
a program, and the important ideas in the 
curriculum are relevant no matter what 
language I decided to use. However, some 
language had to be chosen to implement the 
programs, and I finally settled on BASIC. The 
BASIC language has many well-known 
deficiencies, foremost among them being a 
lack of local subroutine variables and an awk­
wardness in expressing structured code. 
Nevertheless, these are more than balanced 
by the simplicity of the language and the 
widespread fluency in it; BASIC's ready avail­
ability on the microcomputers I was using; 
the existence of both BASIC interpreters con­
venient for writing and debugging programs 
as well as of compilers for producing rapidly 
executing finished programs; and the powerful 
graphics and I/O statements in this language. 

Virtually all of the students were familiar 
with some other high-level language and so 
could learn BASIC "on the fly" while taking 
the course. Several students elected to write 
their projects in other languages. 

I taught the course in a laboratory format 
to junior and senior physics majors. All of 
the students had taken (or were taking) the 
conventional courses in classical, statistical, 
and quantum mechanics, and so were famil­
iar with many of the physics concepts 
involved. Moreover, there is enough of a 
computer culture among the Caltech under­
graduates so that most of them were quite 
familiar with the hardware before beginning 
the course; those who were not became 
proficient after several hours of individual 
instruction. As mentioned above, students 
worked through the material largely on their 
own, although a teaching assistant and I held 
weekly office hours during which we were 
available for help and consultation. Individ­
ual half-hour interviews upon the completion 
of each unit served to monitor the students' 
progress and assess their understanding. I 
found that typical students, working six or 
seven hours per week, could complete three 
or four units in a ten-week term, perhaps 
writing their own codes for two of the proj­
ects and using my codes for the others. 

A brief discussion of a couple of the 
examples and projects will give some feeling 
for the level of the material and the style in 
whichjt is presented. Project 6 illustrates 
techniques for solving elliptic partial differ­
ential equations by considering steady-state 
(time-independent) flow of a viscous fluid 
about an obstacle; for example, the flow of a 
stream around a rock. The mathematical 
description of the flow is based on continuity 
(fluid is neither created nor destroyed) and 
the response of each bit of fluid to the pres­
sure and viscous forces acting on it. When 
the flow is two-dimensional (coordinates x 
and y), these two physical principles can be 
embodied in the coupled non-linear elliptic 
equations, 

[ 
02 0

2
] 

ax2 + ay2 'I'(x,y) = ~(x,y); 

[ ;P + 0
2

] [~~ ~~] 
v ax2 ay2 ~(x,y) = ay ax - ax ay 

Here, 'I' is the stream function specifiying 
the direction of flow at each point, ~ is the 
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Printer OWplIl shows the flow 
0/ a viscous fluid around a 

rectangular plate at various 
velocilies. Streamlines have 

been superimposed on the 
computer-generated patlern. 
The direction of flow is from 
the left , and each patlern is 

reflection-symmetric about Ihe 
lower edge. Note particularly 

the hydraulic "jump': above the 
plate. the laminar flow at low 

velocity (top), the increasing 
separation 0/ the flow from the 

rear 0/ the plate at higher 
velocities (middle), and the 

vortex behind the plate at the 
highest velocity (bollom). 
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fluid's vorticity, and v is the kinematic viscos­
ity. Boundary conditions on IjI and I; (for 
example, the fluid cannot flow into the 
object's surfaces) complete the specification 
on the problem. 

These equations cannot be solved analyti­
cally, but are amenable to a numerical treat­
ment on the computer through discretization . 
The resulting large number of non-linear alge­
braic equations can be solved through a relax­
ation process, in which initial guesses for the 
stream function and vorticity are refined 
iteratively. 

Following a brief derivation and discus­
sion of the equations, students are guided 
through a series of steps culminating in a pro­
gram to solve the flow about a rectangular 
plate at various speeds. Results can be 
displayed as character plots, as shown in the 
figure above, and the drag and pressure forces 
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calculated can be compared with values mea­
sured in the laboratory. Here again, the com­
puter is used to simulate situations for which 
analytical solutions are impossible and for 
which intuition is difficult to develop. 

Example 5 illustrates the use of a com­
puter in a different way - the analysis of 
experimental data by least-squares fitting. 
The physical situation here is the scattering of 
high-energy electrons (approximately 200 mil­
lion electron volts or more) from atomic 
nuclei, a topic currently of high research 
interest in nuclear physics. Because the elec­
trons interact with the nucleus through the 
Coulomb force, the cross sections for such 
scattering are sensitive to the distribution of 
electrical charge (that is, the structure) of the 
nucleus. Indeed, the measured cross sections 
can be "inverted" in a model-independent 
way to obtain the nuclear charge density. 

My program for this problem analyzes 
actual experimental data to infer the charge 
densities for nuclei of calcium, nickel, and 
lead. An iterative, nonlinear least-squares fit 
procedure is used to adjust the cbarge density 
to the measured cross sections. The density 
and fit to the data are displayed as the itera­
tions proceed. In running and understanding 
this program, the student is asked to check 
the accuracy of the fits obtained, to extract 
information about the nuclei from tbem and 
compare with simple nuclear models, and to 
explore alternative fitting strategies. 

In the course of developing and teaching 
this curriculum, I have been impressed by 
several unexpected advantages in formalizing 
tbe instruction of advanced students in using 
the computer as a tool for doing pbysics. To 
write a program simulating a given physical 
situation, the student must understand the 
physics in a different (and complementary) 
way than is needed for an analytical 
approach. Programs also bring a flexibility 
and vividness of presentation that is difficult 
to obtain otherwise. Moreover, simulating 
systems brings a sense of exploration and 
surprise to the learning process, as under­
standing how results change as parameters or 
algorithms change often leads to greater 
insights. Finally, because complex situations 
can be presented, students are exposed in 
detail to research-level problems at an earlier 
stage of their career. In these ways, I expect 
tbat computer-based education in physics at 
this level will supplement, rather than sup­
plant, the traditional mode of lecture 
instruction. 0 


