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Lizzy McEliece 
scratches a favorite 
compact disk with a 
paper clip as her 
father winces in mock 
horror-although he 
knows that error 
correction will save 
his music. Unfor
tunately, this time 
excessive scratching 
zeal finally did in this 
CD, which had, how
ever, performed beau
tifully after a similar 
demonstration at the 
Watson Lecture. 

Safety in Numbers: 
Protecting Data Mathemagically 

by Robert J. McEliece 

They say that people with emotional prob
lems become psychologists, sick children grow 
up to become doctors, people with bad teeth 
become dentists, and so on. Well, when I was 
little, I made a lot of careless mistakes: I could 
not read my own handwriting; I made spelling 
mistakes; I forgot to carry when I multiplied; 
when I tried to play chess, I always overlooked 
something. But after my junior year at Caltech, 
I got a summer job at JPL, where I found out 
that there was a way to use mathematics to 
correct errors automatically! For some reason, 
this subject fascinated me immediately. I leamed 
all about it, and, as it turned out, the theory of 
error correction became a big part of my life's 
work. I still make a lot of errors, but now I get 
paid for correcting them. (And I get paid very 
nicely, thank you.) So, in this article I'd like to 
explain some things about the theory of error 
correction-why I think it's a lot of fun, and 
how it plays a big part in the design of a lot of 
today's communication and data-storage systems. 

Everyone is already pretty good at error 
correction, in English at least. Below is a five
letter English word, in which one of the letters 
has been erased and replaced with a question 
mark: 

Q?EEN 
That's not so hard, is it? Okay, here's a 

slightly harder one-a five-letter word in which 
there's an error. One of the letters has been 
changed to another: 

TRADF 
Well, maybe that wasn't too hard either. 

But you should congratulate yourself anyway, 

because a computer has a much harder time than 
you do solving problems like this. In fact, no 
one knows exactly how humans correct errors in 
English. As a rule, though, it's about twice as 
hard to correct an error as an erasure. 

Here are five more words to try. Change 
one letter and make a common English word. 
(Don't spend too much time on this or you'll 
never get on with this story. The answers are 
on page 36.) THARA 

ADAST 
TRENA 
NEMVE 
SPUR 

If you got a couple or all of them, you can 
see that error correction in English is possible, 
even if it's not always so easy. It's possible 
because there is a subtle and complex pattern to 
the way words and sentences are constructed in 
English. Everybody knows that Q is always fol
lowed by U. That's a pattern, and even if the 
pattern is partially destroyed (by erasing the U, 
for example), the word is still recognizable. 
Many words end with the pattern: vowel, C0l7-

sonant, silent E. Such words as date, stalactite, 
remote, or cute-or trade-illustrate this pattern. 
And even if the silent E is changed to F or 
something, it's still pretty easy to see the pattern 
and tell what the word is. In the last five words, 
however, the pattern isn't as strong, and that's 
why it's harder. 

Sometimes the patterns in English aren't 
good enough. Here's another five-letter word 
with one erased letter: 

S?OUT 

Engineering & Science/Summer 1989 27 



SCOUT 
SHOUT 
SNOUT 
SPOUT 
STOUT 

BLADE 
GRADE 
GLIDE 
GLARE 
GLADS 

BLACK 
SLACK 
STACK 
STALK 
STALE 
SHALE 
WHALE 
WHILE 
WHITE 

There is no one right answer to this one, 
because there are at least live possible answers 
(shown at left). 

The problem is that these live words are too 
close to each other; they differ from each other 
by only one letter, and if the second letter is 
erased, the word is lost. You can probably think 
of lots of other examples. Can you find a word 
of five or more letters such that if you erase one 
letter, there are six or more possible completions? 
(One suggestion appears on page 36.) With 
errors instead of erasures, the situation can be 
even more complex. Here's a five-letter word in 
which one of the letters has been changed: 

GLADE 
Well, GLADE is already a word, and there 

are (at least) five more words (shown at left) that 
we can get from it by changing just one letter. 

You can see that GLADE is rather sensitive 
to possible typos. In fact, in 1879 Lewis Carroll 
invented a word game, called "doublets," based 
on the fact that many pairs of words differ by 
only one letter. For example, we can change 
BLACK into WHITE by making a sequence 
of one-letter changes. If you want to play 
• doublets," you might try turning LEAD into 
GOLD. (See page 36.) 

So English has quite a lot of built-in error
correcting ability because of its natural patterns. 
But it wasn't designed systematically to correct 
errors, and, as we have seen, sometimes changing 
just one letter in a word can dramatically change 
its meaning. Of course, it is just this wonderful 
ambiguity that lets us play word games, commit 
horrible puns, write complex poetry, and invent 
pseudo-words like "mathemagically." I don't 
advocate changing the English language. 

But suppose we did want to design a very 
precise language for absolutely reliable communi
cation of important information (air-traffic con
trol, military commands, deep-space communica
tion, and so on). It turns out that we can do 
much better than English-no fun with word 
games, no clever poetry, but a much better abil
ity to recover from errors. 

The first thing to know, if you want to 
design a new and improved language for com
municating reliably despite errors, is that you 
don't have to use a 26-letter alphabet. (It's like 
Wilbur and Orville Wright designing the air
plane: they looked at the birds for ideas, but 
they didn't have to copy slavishly. Birds have 
wings; that's a good idea. The wings flap; that's 
not such a good idea. Airplanes have things that 
spin around on their noses; they don't have 
feathers, and so on. We can steal ideas from 
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nature if we want to, but only if we want to.) 
In fact, an alphabet with only two letters is 
sufficient, and, as you may know, many modern 
communication and data -storage systems use a 
two-letter alphabet. That's what a digital com
munication system is, really-a two-letter system. 

The letters in these two-letter alphabets are 
usually called zero and one, but these names are 
arbitrary, and any other pair of names would do 
as well, for example, yes/no, up/down, on/off, 
high/low, or trivial and obvious (Caltech stu
dents' favorite two words). However, it's not 
trivial or obvious that with an alphabet of only 
two letters you can communicate any possible 
message. In fact, there is a famous episode of 
·Star Trek" that hinges on just this point. 

This episode, called "The Menagerie," tells 
the story of the unfortunate Captain Christopher 
Pike, who has been exposed to a near-fatal dose 
of delta rays and is confined to a sort of tin can. 
He is able to see and hear and think normally, 
but he cannot speak. His tin can, however, has 
a light on the front that Captain Pike can use to 
communicate-one flash for yes and two for no. 
He has a two-letter alphabet. Captain Kirk tries 
for hours to figure out what's wrong with poor 
Captain Pike, who seems to be upset about 
something. He is joined by Dr. McCoy, who is 
not much help, though he gets quite philosophi
cal about it. The stardate is 3012.4, and the 
dialog runs as follows: 

Capt. Kirk: He keeps blinking "no" -no to 

what? 
Dr. McCoy: They've tried questioning him. 
He's almost agitating himself into a coma. 
Capt. Kirk: How long will he live? 
Dr. McCoy: As long as any of us. Blast 
medicine anyway; we've learned to tie into 
every human organ in the body except one
the brain. The brain is what life is all about. 
Now, that man can think any thought that 
we can, and love, hope, dream as much as we 
can. But he can't reach out and no one can 
reach in. 
Capt. Kirk: He keeps blinking "no" -no to 

what? 
Dr. McCoy: They can question him for days, 
weeks, before they srumble on the right thing. 
Capt. Kirk: Could this have anything to do 
with Spock? 

Yes, of course it has something to do with 
Spock. What's wrong with these guys? Captain 
Pike's mind isn't really trapped in there! They 
should study digital communications. There are 
many ways they could find out what's wrong. 
For example, they could have said to Captain 
Pike, "Think of a sentence describing your prob
lem. Is the first letter A?" and so on, and in five 



But even the 
logical Mr. 
Spock may not 
have known 
that if Captain 
Pike's little 
light had mal
functioned occa
sionally . . . it 
would still have 
been possible to 
communicate 
reliably with 
him. 

minutes they could have found out that Spock 
was planning to kidnap Captain Pike and take 
him to the forbidden planet Talos IV. In fact, 
any conversation that could be carried out be
tween ordinary folks could also be carried out 
with Captain Pike, with a little patience and 
ingenuity. If you've ever played 20 questions 
you already know this. 

In the game of 20 questions there are two 
players. Player 1 thinks of some object, and 
Player 2 tries to guess what the object is by ask
ing Player 1 a series of questions that can be 
answered yes or no. In the traditional version of 
the game, Player 2 is allowed to ask up to 20 
questions. As a simplified illustration, suppose I 
select one of the letters A, B, C, D, E, F, G, or 
H, and ask you to tty to guess it by asking a 
series of yes/no questions. Our dialog might 
proceed as follows: 

Questi0l1: Is it A, B, C, or D? 
Question: Is it A, B, E, or F? 
Question: Is it A, C, E, or G? 

Answer: NO 
Answer: YES 
Answer: NO 

After these three questions you will know what 
the letter is (in this case, it's F), since every one 
of the eight possible patterns of yes/no answers 
corresponds to exactly one of the eight letters. 
(The correspondence is listed on page 36.) 

So Captain Kirk could have communicated 
reliably with Captain Pike by playing 20 ques
tions. But even the logical Mr. Spock may not 
have known that if Captain Pike's little light had 
malfunctioned occasionally (by flashing yes when 
he meant no or vice-versa), it would still have 
been possible to communicate reliably with him. 
This fact is far from trivial and obvious, but it's 

In a vintage Star Trek 
episode poor Captain 
Pike was exposed to 
a near·fatal dose of 
delta rays and locked 

. up incommunicado 
except for a light that 
can flash "yes" or 
"no." He should have 
remembered how to 
play 20 questions. 

nevertheless true. It can be done by playing 
"20 questions with lies: a game invented in the 
1964 PhD thesis of Elwyn Berlekamp at MIT. 

To illustrate how 20 questions with lies 
works, suppose I think of one of the above 
eight letters again, and you tty to guess it asking 
yes/no questions. This time, however, I am not 
required to answer truthfully; I can lie some
times. This time I'll allow you to ask nine ques
tions, and in return you must allow me to lie up 
to twice in my nine answers. Now our dialog 
might go as follows: 

Question 1: Is it A, B, C, or D? 
Question 2: Is it A, B, E, or F? 
Qllestion 3: Is it A, B, C, or E? 
Question 4: Is it A, E, or F? 
Question 5: Is it A or F? 
Question 6: Is it F or G? 
QtJestion 7: Is it F or G? 
Questi on 8: Is it F? 
QtmtiOli 9: Is it F? 

Answer: NO 
Amwer: YES 
Answer: NO 
Amwe;': YES 
Answer: NO 
Answer: YES 
Answer: YES 
Amwer: NO 
Answer: NO 

After these nine questions, even though I may 
have lied to you twice, you will know for sure 
what the letter is, and which answers were lies. 
(The solution appears on page 36.) Indeed, 
Berlekamp's results imply that it is always possi
ble to determine one of eight possibilities with 
no more than nine questions in the presence of 
two lies, although the details of the questioning 
strategy are a little complicated. 

The game of 20 questions with lies makes a 
nice parlor trick, but it also illustrates an impor
tant fact: it is possible to communicate reliably 
even though the communication medium itself 
is unteliable. This fact, and its remarkable con
sequences, was discovered in 1948 by a young 
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Members of the 
Claude Shannon fan 
club pose with their 
idol (left) at the Inier· 
national information 
Theory Symposium in 
Brighton, /England, in 
1985. Mc/Eliece is 
second from right. At 
right is Paddy Farrell 
of the University of 
Manchester (co-chair· 
man, with Mc/Eliece, 
of the symposium). 
Shannon showed that 
any communication 
process (Ieit) can be 
rendered reliable by 
adding redundancy 
(on opposite page) 
that creates ill strong 
patiern with the origi· 
nal data. 

mathematician named Claude Shannon, one of 
the finest minds of this or any other century. 
(Berlekamp was a student of Shannon's.) Before 
I describe his scientific accomplishments as the 
inventor of information theory, let me tell twO 
Shannon stories. 

In 1985 the Japanese government decided 
to institute a prize for scientific and humanistic 
achievement, called the Kyoto Prize, which the 
Japanese hoped would rival the Nobel Prizes. 
(In monetary value a Kyoto Prize is worth 
slightly more than a Nobel.) The first Kyoto 
Prize in Basic Sciences was given to Claude 
Shannon. I expect there was very little trouble 
deciding whom to give it to. He would have 
won a Nobel Prize years ago, except that his 
achievements are in engineering and mathemat
ics, and there aren't any Nobel Prizes in those 
subjects. The Kyoto Prizes cover all of science, 
so he was immediately eligible. 

The second story is more personal. Shan
non's main work was all done before 1965. 
Since then he has been semiretired, and a whole 
generation of researchers (including me) had 
never met him until June of 1985, when he 
unexpectedly showed up in Brighton, England, 
at an International Information Theory Sympo
sium. All of us Shannon fans (which included 
everyone at the symposium, I can assure you) 
were thrilled to see him, and cameras were click
ing all week. At the closing banquet, Shannon 
was, of course, seated at the head table. About 
halfway through the banquet, Lee Davisson, who 
was at that time head of the electrical engineer
ing department at the Universiry of Maryland, 
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did what we had all secretly wanted to do all 
week: he asked Shannon for his autograph. 
That opened the floodgates. For the rest of the 
meal, there was a long line of autograph hounds 
(including me) waiting for Shannon's autograph. 
If you know how large scientific egos tend to be, 
you'll understand how really astonishing this 
scene was. It was as if Newton had showed 
up at a physics conference. 

That's enough hagiography. What exactly 
did Shannon do? 

Claude Shannon has a great feeling for gen
eralities. He saw that any communication 
process-talking to another person either face
to-face or on the phone, watching TV, sending 
photographs of Neptune to Earth-can be 
modeled by the simple picture at left. The in
formation that must be communicated is trans
mitted over a channel-the air that separates two 
people conversing, a telephone wire, the compli
cated stuff between the television studio and your 
house, or the 2.8 billion miles of empty space 
between Neptune and Earth. All communica
tion channels are to a greater or lesser degree 
"noisy," which means that what comes out of the 
channel isn't always exactly what goes in. On 
many channels, the noise is intolerable-think 
of a bad phone connection or trying to talk to 
someone near the airport when a 747 flies over. 
Until Shannon, everybody thought that the only 
way to communicate reliably over an unreliable 
channel was to physically make the channel more 
reliable-yelling to overcome the 747 noise, or, 
more generally, building more powerful trans
mitters or more sensitive receivers, and so on. In 
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1948, however, Shannon showed that this wasn't 
necessary. It is, in fact, possible to communicate 
perfectly reliably over essentially any channel, 
however noisy it may be. I already showed you 
an example of this: I was able to communicate 
to you one letter of the alphabet over a channel 
that caused errors (lies). 

The illustration above shows Shannon's solu
tion for communicating reliably over an unreli
able channel. The idea is to send the data over 
the channel as shown in the previous diagram; 
but before the data is sent over the channel, it's 
processed by a man-made device called an en
coder. The job of the encoder is to take the data 
and use it to calculate something called redun
dancy. The redundancy is then combined with 
the data before it's transmitted. Roughly speak
ing, the. redundancy is added so that when the 
data and redundancy are combined, a strong pat
tern appears. It's a little like adding a U after 
every Q. Then the data and the corresponding 
redundancy (the combination is usually called a 
codeword) are sent over the noisy channel. Of 
course, the channel may cause errors in the 
redundancy as well as in the data. Shannon 
showed, however, that if the redundancy is com
puted in just the right way, the resulting pattern 
in the codeword will be so strong that it will 
almost always still be recognizable despite the 
channel noise. The pattern-recognizing device 
is called the decoder, and its job is to reconstruct 
the original data, using the noisy data and the 
noisy redundancy as clues. 

There's a corollary to this, which is perhaps 
the most important thing about Shannon's work 

and which is not fully appreciated, even by many 
professionals today. It's that Shannon's theory 
applies to all channels, even ones that aren't 
noisy. In fact, Shannon tells us that if tne chan
nel isn't making a lot of errors, you're not using 
the channel to its fullest capacity. For example, 
if you're communicating photographs from Nep
tune to Earth, say at the rate of one picture per 
second, and everything seems to be going as well 
as it could, you're fooling yourself. You should 
be pushing the channel harder, maybe 10 pic
tures per second, right to the ragged edge of 
failure, forcing the channel to make lots of 
errors, and then correcting the errors, using 
redundancy and pattern recognition. In this way 
Shannon showed that every channel has an ulti
mate capability to transmit information, called 
the channel's capacity or Shannon limit, and that 
this limit can be reached only if the channel is 
making lots of errors, which are being corrected 
by the decoder like crazy. Shannon proved that 
channel capacity is like the speed of light: with 
a lot of work (building fancy encoders and de
coders) you can get as close to it as you like, 
but you can never quite get there. 

What Shannon did not do, however, was 
to say exactly how the encoders and decoders 
should be designed; he only showed that it must 
be possible. The actual design task he left for 
later generations, who have accepted that chal
lenge. (Thank goodness he left something for 
us to do!) Today there are dozens of different 
error-correction systems in practical use in a wide 
variety of applications. I can't begin to describe 
even a few of these error-correction systems in 
the space of this article, so I'll content myself 
with just one, which was invented in 1960 by 
two MIT researchers, Irv Reed and Gus Solo
mon. Reed is now professor of electrical engi
neering at USC, and Solomon is a senior scientist 
at Hughes Aircraft Company (and also a well
known teacher of integrated voice and movement). 

Reed-Solomon codes, as they're now called, 
began as only a theoretical curiosity, but today 
they're probably the most widespread and gen
erally useful error-correcting code system. Reed
Solomon codes work, ultimately, with zeros and 
ones (bits), but it's easier to understand what's 
going on if you think not in terms of bits but of 
bytcs-a group of eight bits. There are 256 pos
sible bytes, numbered from 0 to 255. Reed
Solomon codes protect data that has been 
grouped into bytes; the data is in bytes, and the 
redundancy is in bytes, but since the bytes are in 
correspondence with the numbers 0 through 
255, let's just pretend that they work on ordi
nary numbers. 
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So now let's see how Dr. Reed and Dr. 
Solomon filled Shannon's prescription. We 
shall see that the basic ideas are geometric: 
the information to be transmitted is encoded 
as part of a strong geometric patrern that 
can be recognized even if it is partly garbled 
by the channel. 

Let's suppose, for example, that we want to 
transmit just twO numbers, say 3.6 and 5.9, 
from one point to another over a noisy 
channel, and that we want to encode these 
numbers before transmitring them, using 
Reed and Solomon's ideas. To do this, 
we first plot the two numbers geometrically, 
and then join them with a straight line 
(figure 1). This straight line began with 
only two points, but of course now there 
are lots of other points on it. Let's pick 
four more of these points, spaced equally 
along the line, which as you can see from 
the figure are 8.2, 10.5, 12.8, and 15.1 
(figure 2). We then use these four extra 
numbers as the redundancy and transmit the 
data plus the redundancy as the codeword 
[3.6, 5.9, 8.2, 10.5, 12.8, 15.11. This 
codeword has a very strong patrern: each 
number is exactly 2.3 more than the previ
ous one. 

Now let's send our codeword over the chan
nel, and let's say that two errors occur, in 
the second and fourth positions, so that 
[3.6, 10.6,8.2,3.6, 12.8, 15.1] is received 
(figure 3). You can see that the straight
line patrern has been spoiled, but not 
entirely obliterated, since four of the six 
points still lie on a straight line. If we draw 
a straight line through these four points, we 
see that two of the points aren't on the line 
(figure 4). But since we know that the 
transmitted points all began on a straight 
line, in order to recover from the errors, all 
we have to do is move the wayward points 
back onto the line (moving vertically, as 
shown), and presto! the original codeword 
[3.6, 5.9,8.2, 10.5, 12.8, 15.1] appears 
(figure 5). Now the original information 
[3.6 and 5.9] can be read off, and we have 
communicated these numbers reliably 
despite the channel noise. 
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Although this was just one example, the 
same process will always work. If the six
number codeword is su bjected to two or 
fewer errors, no matter where the errors 
occur, at least four of the received numbers 
will still lie on a straight line, and if the 
decoder draws that straight line, the errone
ous numbers can be moved onto the line 
and corrected. If the channel is in an espe
cially bad mood, however, and three or 
more errors occur, the system can fail. Can 
you see why? (The answer is on page 36.) 
If you want your codeword to correct three 
errors, you'll need six redundant numbers; 
and to correct four errors, you'll need eight 
extra numbers, and so on. 

I've just explained how Reed-Solomon cod
ing is used to protect pairs of numbers: you 
connect the two points with a straight line, 
add extra points on the line, etc. In prac
tice, of course, you might want to send 
three or more numbers at once. How do 
Reed-Solomon codes do this? To see how, 
let·s consider another example. Suppose we 
wanted to send the three numbers [3.6, 1.2, 
2.2] over a noisy channel. We again plot 
the three points geometrically (figure 6). 
Unfortunately, these three points don't lie 
on a straight line. But any three points will 
determine a parabola, which is a second
degree curve, so let's draw a parabola 
through these points (figure 7). Now that 
we have the parabola, it's easy to guess 
what to do next. We locate some more, say 
four more, equally spaced points (equally 
spaced horizontally) on the parabola, and 
use these points as the redundancy, thereby 
producing the codeword [3.6, 1.2, 2.2, 6.6, 
14.4,25.6,40.2] (figure 8). The original 
data had no particular pattern, but this 
seven-number codeword has a very strong 
pattern, because the seven points all lie on 
the same parabola. (It's extremely unlikely 
that seven numbers chosen at random would 
lie on a parabola.) 
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With four redundant numbers protecting 
three pieces of data, we can again correct 
any pattern of two errors. For example, 
suppose the parabolic codeword [3.6, 1.2, 
2.2,6.6, 14.4,25.6,40.2] were received as 
[11.6, 1.2, 2.2, 6.6, 3.3, 25.6, 40.2], with 
errors in the first and fifth positions. To 
correct the errors, we'd plot the seven re
ceived numbers and look for a parabola 
connecting five of them (figure 9). In this 
case, it's a little difficult for us humans to 
see the pattern, but the decoder (computer) 
doesn't have any trouble, and finds the 
"majority parabola" immediately (figure 10). 
Two of the points don't lie on the parabola, 
so the decoder moves them back on, thereby 
correcting the errors. Again, with only four 
redundant numbers, this particular scheme 
can correct only two errors; to correct more 
errors, more redundancy is needed, the gen
eral rule being that two redundant numbers 
are needed for each error to be cortected. 

What if we wanted to send four numbers 
at once? Just as two points determine a 
straight line, and three points determine a 
parabola, four points determine a cubic curve 
(figure 11). If we want to protect the four 
numbers from three errors, say, then accord
ing to Reed and Solomon, we need to 
choose six more points on the curve, thereby 
producing the lO-number codeword [I 3 3. 1, 
73.9,39.6,24.4,22.5,28.1,35.4, 38.6, 
31.9,9.5] (figure 12). When this code
word is received, the decoder plots the 
points, looks for a cubic curve that goes 
through at least seven of them, and moves 
the errant points back onto the cubic, 
thereby correcting the errors. 
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This "theoretical" discussion of Reed-Solomon 
codes gives a pretty accurate idea of how they 
work, but it's unrealistic in a number of impor
tant ways. As I mentioned earlier, Reed
Solomon codes deal with bytes, which are not 
quite the same as ordinary numbers; and in real 
applications, there are many more than two, 
three, or four pieces of data in each code word. 

\'Vhen I teach my students about Reed
Solomon codes, I try to make the subject more 
practical by dividing the class into teams and 
having each team write a computer program 
capable of implementing a fairly powerful RS 
code. In the particular code I give them, each 
codeword consists of 15 data characters protected 
by 16 redundant characters, where a "character" 
is one of the 26 letters, A, B .... Z, or one of 
the six additional symbols (space), ", #, $, %, 
and &, so the students work, in effect, with a 
32-letter alphabet. If they want to transmit the 
15-letter word RUMPLESTILTSKIN, for exam
ple, their program must first compute the 16 
characters of redundancy, which in this case turn 
out to be RASZUOBUOS"&YTjS, so the code
word is 

RUMPLESTILTSKINRASZUOBUOS"&YTjS 

You may find this codeword unattractive; but to 
the Reed-Solomon decoder, it's beautiful: the 31 
characters (when interpreted as special kinds of 
numbers) all lie on a 14th-degree polynomial 
curve. With 16 redundant letters, the codeword 
can resist any combination of eight or fewer 
errors. For example, if we change the word to 

R MCELIECETSKINRASZUOBUOS "&YTjS 
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Reed·Solomon codes 
made it possible for 
Voyager 2 to send 
back pictures such as 
this one of geologie 
details on Miranda, 
one of the Uranian 
moons. 

On opposite page: Irv 
Reed (right) and Gus 
Solomon, who in· 
vented their error· 
correction system 
in 1960. 

(which I like better), and give it to the decoder, 
it will see that the pretty pattern has been ruined 
but will find that 23 of the 31 characters still lie 
on a 14th-degree curve. (To do this, it uses an 
algorithm invented by Elwyn Berlekamp, the 
20-questions-with-lies guy, who's now a profes
sor at UC Berkeley and president of Cyclotronics, 
Inc. a company that builds Reed-Solomon 
hardware.) It will then force the eight offending 
characters back onto the curve and give us 

RUMPLESTILTSKINRASZUOBUOS "&YTjS 

agam. 
There are many applications of Shannon's 

theorems in general, and Reed-Solomon codes in 
particular, in today's technology. Error-correcting 
codes are used in many high-performance mili
tary and civilian communication systems. For 
example, the high-speed modems that today's 
computers use to talk to each other are made 
possible by fancy error correction, among other 
things. One of the most spectacular applications 
is in the exploration of the solar system. The 
Voyager 2 spacecraft sent pictures of the planet 
Uranus back to Earth in january 1986, using 
what must be the most sophisticated and power
ful communication system ever built, on this 
planet at least. (Uranus is 2 billion miles away, 
and Voyager's transmitting power is only 20 
watts. That's weaker than the lightbulb in your 
refrigerator.) That communication system has 
some pretty fancy error correction, which includes 
a Reed-Solomon code with 223 bytes of data 
and 32 bytes of redundancy in every codeword. 
Of course, Voyager's communication system 



Reed-Solomon 
codes, as they're 
now called, 
began as only a 
theoretical curi
osity, but today 
they're probably 
the most wide
spread and gen
erally useful 
error-correcting 
code system. 

depends on a lot of other things too: big and 
accurate antennas, low-noise receivers, sophisti
cated transmitters, and much more. Still, 
without the error-correcting codes, Voyager 
would have been able to send only about 20 
percent of the data that it actually did send. 

But applications to communications systems 
are just half the story. Shannon's theorems have 
also been applied to the storage of information, 
not just transmission. If you think about it, 
storage is another form of communication
communication in time rather than space; from 
now to then rather than from here to there. Any
way, there are many storage systems that use 
Shannon's prescription-computer tapes, disks, 
and so on. In terms of dollars invested, one of 
the most widespread applications of Shannon's 
theorems (via Reed-Solomon coding, in fact) is 
in data storage. If you own a CD player, then 
you own a data-storage system that uses Reed
Solomon codes. It's all done using Shannon's 
prescription, and zeros and ones. 

A CD holds up to 74 minutes of music. 
The music is represented digitally, using lots of 
zetos and ones. In fact, it takes about 1.5 mil
lion bits to represent just one second of music, 
and more than 6 billion bits are needed for the 
entire 74 minutes. The bits are stored optically, 
with tiny "pits" on the mirrorlike surface of one 
side of the CD. These pits are recorded along a 
spiral track on the disk, a track that is more 
than three and a half miles long but only .5 
microns wide (.5 microns is approximately the 
wavelength of green light; that's why light is 
scattered into a rainbow by the surface of the 

CD). The pits range from 0.9 to 3.3 microns 
in length. Such tiny features are quite suscepti
ble to errors; fingerprints, dust, dirt, abrasions, 
and manufacturing irregularities can all cause 
problems. So an error-correcting code is used 
on these disks, and it turns out to be a Reed
Solomon code, in which the bits of information 
were first blocked into eight-bit bytes. The 
details are a little complicated (the industry's 
acronym is "CIRC,' for "Cross-Interleaved 
Reed-Solomon Code") but to protect the 6 bil
lion bits on the disk, another 2 billion error
correcting bits are added, so that fully 25 percent 
of the bits on the disk are for error correction. 
Your CD player at home contains a very sophis
ticated Reed-Solomon decoder, which processes 
about 2 million coded bits per second. 

The result of all this is that a CD is remark
ably resistant to errors. I have heard that you can 
actually drill holes in a CD and it will still play, 
and I know (since I've done it myself) that you 
can deliberately scratch one with a paper clip 
without losing any music. And because of the 
error correction the music you hear from a 
scratched disk isn't merely almost as good as the 
original; it's exactly as good as the original. Of 
course, if you get carried away and overdo it, 
you might really wreck your favorite CD (which 
is unfortunately what happened to my poor 
Buddy Holly CD when we shot the photo on 
page 26). Coding to combat malicious mischief 
is beyond the scope of this article. D 

Bob iHcEliece has been professor of electrical 
engimering at Caltech since 1982. He's also an 
alNmnlls (BS 1964, PhD 1967), as is 11';1 Reed 
(BS 1944, PhD 1949). From 1967 to 1978 
McEliece worked at jPL as sllpervisor of the infor
mation processing gr01Jp in the communications 
research section, and then became professor of 
mathematics at the University of Illinois at 
Urbana-Champaign before retllming to his alma 
mater. AfcElieee is especially well known for 
applicatiollS of discrete mathematics to various 
problems in commlf1Zicatioll theory. 

This article was adapted from an Aprillf/at
son Lecture feattll-ing cOl7Siderabie audience parti
cipation. A good time was had by all, thanks to 
AfcEliece's talent for making error-correcting codes 
a lot of flln. Both Reed and Solomon were in the 
audience at Beckman Auditorium. 

If YOll haven't all-cady peeked, tum the page 
for the allSwers to the problems posed in the article. 
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Answers: Safety in Numbers 

page 27 

page 28 

TIARA 
ADAPT 
TREND 
NERVE 
SPLIT 

One possibility for six variations on a five
letter word was submitted by Paul Car
penter of Burbank after the \\1 atson Lecture: 
STA?E 

Doublets: 

page 29 

STAGE 
STAKE 
STALE 
STARE 
STATE 
STAVE 

LEAD 
LOAD 
GOAD 
GOLD 

The correspondence berween the eight pat
terns of YES-NO answers to the three 
questions, "Is it A, B, C, or D?" "Is it A, 
B, E, or Ft and "Is it A, C, E, or Gr is as 
follows: 

A: YES YES YES 
B: YES YES NO 
C: YES NO YES 
D: YES NO NO 
E: NO YES YES 
F: NO YES NO 
G: NO NO YES 
H: NO NO NO 
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To solve the 20-questions-with-lies problem, 
it's best to think of each of the nine answers 
as a vote against some of the letters. For 
example, the first answer counts as one vote 
against each of the letters A, B, C, and D; 
the second answer is a vote against the 
letters C, D, G, and H; and so on. In this 
way, we can calculate a little table, giving 
the votes against each of the eight letters: 

A: 1, 3, 5, 6, 7 
B: 1, 3, 4, 6, 7 
C: 1, 2, 3, 4, 6, 7 
D: 1, 2, 4, 6, 7 
E: 3,6,7 
F: 5,8,9 
G: 2,4 
H: 2,4,6,7 

This table shows that, for example, A has 5 
negative votes; in other words, if the letter 
really were A, then I lied 5 times. Simi
larly, if it were B, I lied 5 times; if it were 
C, I lied 6 times, etc. But since I agreed to 

lie at most rwice, and all letters but G have 
3 or more negative votes, the letter must 
have been G, and I must have lied on 
answers 2 and 4. (Notice also that all 9 
questions were needed, since after 8 
questions, both F and G were still in the 
running.) 

page 33 

If [3.6, 5.9, 8.2, 10.5, 12.8, 15.1] is sent, 
but received as, say [3.6, 9.1, 8.2, 10.5, 
6.4,5.5] (with errors in positions 2,5, and 
6), then four of the points (9.1, 8.2, 6.4, 
and 5.5) lie on a straight line, but not the 
original straight line! (figure AI). But the 
decoder will have no way of knowing this, 
and so will move the rwo points that are off 
the line back on (figure A2) thereby produc
ing the "codeword" [10.0, 9.1, 8.2, 7.3, 
6.4, 5.5] and reporting that the transmitted 
information was [10.0,9.11. 

12. 
10.5 

6. 

4. 

2. 
figure Ai 

4. 

2. 
figure A2 


