
26 Engineering & Science/Summer 1989

Lizzy McEliece
scratches a favorite
compact disk with a
paper clip as her
father winces in mock
horror-although he
knows that error
correction will save
his music. Unfor
tunately, this time
excessive scratching
zeal finally did in this
CD, which had, how
ever, performed beau
tifully after a similar
demonstration at the
Watson Lecture.

Safety in Numbers:
Protecting Data Mathemagically

by Robert J. McEliece

They say that people with emotional prob
lems become psychologists, sick children grow
up to become doctors, people with bad teeth
become dentists, and so on. Well, when I was
little, I made a lot of careless mistakes: I could
not read my own handwriting; I made spelling
mistakes; I forgot to carry when I multiplied;
when I tried to play chess, I always overlooked
something. But after my junior year at Caltech,
I got a summer job at JPL, where I found out
that there was a way to use mathematics to
correct errors automatically! For some reason,
this subject fascinated me immediately. I leamed
all about it, and, as it turned out, the theory of
error correction became a big part of my life's
work. I still make a lot of errors, but now I get
paid for correcting them. (And I get paid very
nicely, thank you.) So, in this article I'd like to
explain some things about the theory of error
correction-why I think it's a lot of fun, and
how it plays a big part in the design of a lot of
today's communication and data-storage systems.

Everyone is already pretty good at error
correction, in English at least. Below is a five
letter English word, in which one of the letters
has been erased and replaced with a question
mark:

Q?EEN
That's not so hard, is it? Okay, here's a

slightly harder one-a five-letter word in which
there's an error. One of the letters has been
changed to another:

TRADF
Well, maybe that wasn't too hard either.

But you should congratulate yourself anyway,

because a computer has a much harder time than
you do solving problems like this. In fact, no
one knows exactly how humans correct errors in
English. As a rule, though, it's about twice as
hard to correct an error as an erasure.

Here are five more words to try. Change
one letter and make a common English word.
(Don't spend too much time on this or you'll
never get on with this story. The answers are
on page 36.) THARA

ADAST
TRENA
NEMVE
SPUR

If you got a couple or all of them, you can
see that error correction in English is possible,
even if it's not always so easy. It's possible
because there is a subtle and complex pattern to
the way words and sentences are constructed in
English. Everybody knows that Q is always fol
lowed by U. That's a pattern, and even if the
pattern is partially destroyed (by erasing the U,
for example), the word is still recognizable.
Many words end with the pattern: vowel, C0l7-

sonant, silent E. Such words as date, stalactite,
remote, or cute-or trade-illustrate this pattern.
And even if the silent E is changed to F or
something, it's still pretty easy to see the pattern
and tell what the word is. In the last five words,
however, the pattern isn't as strong, and that's
why it's harder.

Sometimes the patterns in English aren't
good enough. Here's another five-letter word
with one erased letter:

S?OUT

Engineering & Science/Summer 1989 27

SCOUT
SHOUT
SNOUT
SPOUT
STOUT

BLADE
GRADE
GLIDE
GLARE
GLADS

BLACK
SLACK
STACK
STALK
STALE
SHALE
WHALE
WHILE
WHITE

There is no one right answer to this one,
because there are at least live possible answers
(shown at left).

The problem is that these live words are too
close to each other; they differ from each other
by only one letter, and if the second letter is
erased, the word is lost. You can probably think
of lots of other examples. Can you find a word
of five or more letters such that if you erase one
letter, there are six or more possible completions?
(One suggestion appears on page 36.) With
errors instead of erasures, the situation can be
even more complex. Here's a five-letter word in
which one of the letters has been changed:

GLADE
Well, GLADE is already a word, and there

are (at least) five more words (shown at left) that
we can get from it by changing just one letter.

You can see that GLADE is rather sensitive
to possible typos. In fact, in 1879 Lewis Carroll
invented a word game, called "doublets," based
on the fact that many pairs of words differ by
only one letter. For example, we can change
BLACK into WHITE by making a sequence
of one-letter changes. If you want to play
• doublets," you might try turning LEAD into
GOLD. (See page 36.)

So English has quite a lot of built-in error
correcting ability because of its natural patterns.
But it wasn't designed systematically to correct
errors, and, as we have seen, sometimes changing
just one letter in a word can dramatically change
its meaning. Of course, it is just this wonderful
ambiguity that lets us play word games, commit
horrible puns, write complex poetry, and invent
pseudo-words like "mathemagically." I don't
advocate changing the English language.

But suppose we did want to design a very
precise language for absolutely reliable communi
cation of important information (air-traffic con
trol, military commands, deep-space communica
tion, and so on). It turns out that we can do
much better than English-no fun with word
games, no clever poetry, but a much better abil
ity to recover from errors.

The first thing to know, if you want to
design a new and improved language for com
municating reliably despite errors, is that you
don't have to use a 26-letter alphabet. (It's like
Wilbur and Orville Wright designing the air
plane: they looked at the birds for ideas, but
they didn't have to copy slavishly. Birds have
wings; that's a good idea. The wings flap; that's
not such a good idea. Airplanes have things that
spin around on their noses; they don't have
feathers, and so on. We can steal ideas from

28 Engineering & Science/Summer 1989

nature if we want to, but only if we want to.)
In fact, an alphabet with only two letters is
sufficient, and, as you may know, many modern
communication and data -storage systems use a
two-letter alphabet. That's what a digital com
munication system is, really-a two-letter system.

The letters in these two-letter alphabets are
usually called zero and one, but these names are
arbitrary, and any other pair of names would do
as well, for example, yes/no, up/down, on/off,
high/low, or trivial and obvious (Caltech stu
dents' favorite two words). However, it's not
trivial or obvious that with an alphabet of only
two letters you can communicate any possible
message. In fact, there is a famous episode of
·Star Trek" that hinges on just this point.

This episode, called "The Menagerie," tells
the story of the unfortunate Captain Christopher
Pike, who has been exposed to a near-fatal dose
of delta rays and is confined to a sort of tin can.
He is able to see and hear and think normally,
but he cannot speak. His tin can, however, has
a light on the front that Captain Pike can use to
communicate-one flash for yes and two for no.
He has a two-letter alphabet. Captain Kirk tries
for hours to figure out what's wrong with poor
Captain Pike, who seems to be upset about
something. He is joined by Dr. McCoy, who is
not much help, though he gets quite philosophi
cal about it. The stardate is 3012.4, and the
dialog runs as follows:

Capt. Kirk: He keeps blinking "no" -no to

what?
Dr. McCoy: They've tried questioning him.
He's almost agitating himself into a coma.
Capt. Kirk: How long will he live?
Dr. McCoy: As long as any of us. Blast
medicine anyway; we've learned to tie into
every human organ in the body except one
the brain. The brain is what life is all about.
Now, that man can think any thought that
we can, and love, hope, dream as much as we
can. But he can't reach out and no one can
reach in.
Capt. Kirk: He keeps blinking "no" -no to

what?
Dr. McCoy: They can question him for days,
weeks, before they srumble on the right thing.
Capt. Kirk: Could this have anything to do
with Spock?

Yes, of course it has something to do with
Spock. What's wrong with these guys? Captain
Pike's mind isn't really trapped in there! They
should study digital communications. There are
many ways they could find out what's wrong.
For example, they could have said to Captain
Pike, "Think of a sentence describing your prob
lem. Is the first letter A?" and so on, and in five

But even the
logical Mr.
Spock may not
have known
that if Captain
Pike's little
light had mal
functioned occa
sionally . . . it
would still have
been possible to
communicate
reliably with
him.

minutes they could have found out that Spock
was planning to kidnap Captain Pike and take
him to the forbidden planet Talos IV. In fact,
any conversation that could be carried out be
tween ordinary folks could also be carried out
with Captain Pike, with a little patience and
ingenuity. If you've ever played 20 questions
you already know this.

In the game of 20 questions there are two
players. Player 1 thinks of some object, and
Player 2 tries to guess what the object is by ask
ing Player 1 a series of questions that can be
answered yes or no. In the traditional version of
the game, Player 2 is allowed to ask up to 20
questions. As a simplified illustration, suppose I
select one of the letters A, B, C, D, E, F, G, or
H, and ask you to tty to guess it by asking a
series of yes/no questions. Our dialog might
proceed as follows:

Questi0l1: Is it A, B, C, or D?
Question: Is it A, B, E, or F?
Question: Is it A, C, E, or G?

Answer: NO
Answer: YES
Answer: NO

After these three questions you will know what
the letter is (in this case, it's F), since every one
of the eight possible patterns of yes/no answers
corresponds to exactly one of the eight letters.
(The correspondence is listed on page 36.)

So Captain Kirk could have communicated
reliably with Captain Pike by playing 20 ques
tions. But even the logical Mr. Spock may not
have known that if Captain Pike's little light had
malfunctioned occasionally (by flashing yes when
he meant no or vice-versa), it would still have
been possible to communicate reliably with him.
This fact is far from trivial and obvious, but it's

In a vintage Star Trek
episode poor Captain
Pike was exposed to
a near·fatal dose of
delta rays and locked

. up incommunicado
except for a light that
can flash "yes" or
"no." He should have
remembered how to
play 20 questions.

nevertheless true. It can be done by playing
"20 questions with lies: a game invented in the
1964 PhD thesis of Elwyn Berlekamp at MIT.

To illustrate how 20 questions with lies
works, suppose I think of one of the above
eight letters again, and you tty to guess it asking
yes/no questions. This time, however, I am not
required to answer truthfully; I can lie some
times. This time I'll allow you to ask nine ques
tions, and in return you must allow me to lie up
to twice in my nine answers. Now our dialog
might go as follows:

Question 1: Is it A, B, C, or D?
Question 2: Is it A, B, E, or F?
Qllestion 3: Is it A, B, C, or E?
Question 4: Is it A, E, or F?
Question 5: Is it A or F?
Question 6: Is it F or G?
QtJestion 7: Is it F or G?
Questi on 8: Is it F?
QtmtiOli 9: Is it F?

Answer: NO
Amwer: YES
Answer: NO
Amwe;': YES
Answer: NO
Answer: YES
Answer: YES
Amwer: NO
Answer: NO

After these nine questions, even though I may
have lied to you twice, you will know for sure
what the letter is, and which answers were lies.
(The solution appears on page 36.) Indeed,
Berlekamp's results imply that it is always possi
ble to determine one of eight possibilities with
no more than nine questions in the presence of
two lies, although the details of the questioning
strategy are a little complicated.

The game of 20 questions with lies makes a
nice parlor trick, but it also illustrates an impor
tant fact: it is possible to communicate reliably
even though the communication medium itself
is unteliable. This fact, and its remarkable con
sequences, was discovered in 1948 by a young

Engineering & Science/Summer 1989 29

data
noisy
data

Members of the
Claude Shannon fan
club pose with their
idol (left) at the Inier·
national information
Theory Symposium in
Brighton, /England, in
1985. Mc/Eliece is
second from right. At
right is Paddy Farrell
of the University of
Manchester (co-chair·
man, with Mc/Eliece,
of the symposium).
Shannon showed that
any communication
process (Ieit) can be
rendered reliable by
adding redundancy
(on opposite page)
that creates ill strong
patiern with the origi·
nal data.

mathematician named Claude Shannon, one of
the finest minds of this or any other century.
(Berlekamp was a student of Shannon's.) Before
I describe his scientific accomplishments as the
inventor of information theory, let me tell twO
Shannon stories.

In 1985 the Japanese government decided
to institute a prize for scientific and humanistic
achievement, called the Kyoto Prize, which the
Japanese hoped would rival the Nobel Prizes.
(In monetary value a Kyoto Prize is worth
slightly more than a Nobel.) The first Kyoto
Prize in Basic Sciences was given to Claude
Shannon. I expect there was very little trouble
deciding whom to give it to. He would have
won a Nobel Prize years ago, except that his
achievements are in engineering and mathemat
ics, and there aren't any Nobel Prizes in those
subjects. The Kyoto Prizes cover all of science,
so he was immediately eligible.

The second story is more personal. Shan
non's main work was all done before 1965.
Since then he has been semiretired, and a whole
generation of researchers (including me) had
never met him until June of 1985, when he
unexpectedly showed up in Brighton, England,
at an International Information Theory Sympo
sium. All of us Shannon fans (which included
everyone at the symposium, I can assure you)
were thrilled to see him, and cameras were click
ing all week. At the closing banquet, Shannon
was, of course, seated at the head table. About
halfway through the banquet, Lee Davisson, who
was at that time head of the electrical engineer
ing department at the Universiry of Maryland,

30 Engineering & Science/Summer 1989

did what we had all secretly wanted to do all
week: he asked Shannon for his autograph.
That opened the floodgates. For the rest of the
meal, there was a long line of autograph hounds
(including me) waiting for Shannon's autograph.
If you know how large scientific egos tend to be,
you'll understand how really astonishing this
scene was. It was as if Newton had showed
up at a physics conference.

That's enough hagiography. What exactly
did Shannon do?

Claude Shannon has a great feeling for gen
eralities. He saw that any communication
process-talking to another person either face
to-face or on the phone, watching TV, sending
photographs of Neptune to Earth-can be
modeled by the simple picture at left. The in
formation that must be communicated is trans
mitted over a channel-the air that separates two
people conversing, a telephone wire, the compli
cated stuff between the television studio and your
house, or the 2.8 billion miles of empty space
between Neptune and Earth. All communica
tion channels are to a greater or lesser degree
"noisy," which means that what comes out of the
channel isn't always exactly what goes in. On
many channels, the noise is intolerable-think
of a bad phone connection or trying to talk to
someone near the airport when a 747 flies over.
Until Shannon, everybody thought that the only
way to communicate reliably over an unreliable
channel was to physically make the channel more
reliable-yelling to overcome the 747 noise, or,
more generally, building more powerful trans
mitters or more sensitive receivers, and so on. In

data

Shannon showed
that every chan
nel has an ulti
mate capability
to transmit
information
and that this
limit can be
reached only if
the channel is
making lots of
errors.

data

redundancy

good
,..-----, data

1Il----t>i

1948, however, Shannon showed that this wasn't
necessary. It is, in fact, possible to communicate
perfectly reliably over essentially any channel,
however noisy it may be. I already showed you
an example of this: I was able to communicate
to you one letter of the alphabet over a channel
that caused errors (lies).

The illustration above shows Shannon's solu
tion for communicating reliably over an unreli
able channel. The idea is to send the data over
the channel as shown in the previous diagram;
but before the data is sent over the channel, it's
processed by a man-made device called an en
coder. The job of the encoder is to take the data
and use it to calculate something called redun
dancy. The redundancy is then combined with
the data before it's transmitted. Roughly speak
ing, the. redundancy is added so that when the
data and redundancy are combined, a strong pat
tern appears. It's a little like adding a U after
every Q. Then the data and the corresponding
redundancy (the combination is usually called a
codeword) are sent over the noisy channel. Of
course, the channel may cause errors in the
redundancy as well as in the data. Shannon
showed, however, that if the redundancy is com
puted in just the right way, the resulting pattern
in the codeword will be so strong that it will
almost always still be recognizable despite the
channel noise. The pattern-recognizing device
is called the decoder, and its job is to reconstruct
the original data, using the noisy data and the
noisy redundancy as clues.

There's a corollary to this, which is perhaps
the most important thing about Shannon's work

and which is not fully appreciated, even by many
professionals today. It's that Shannon's theory
applies to all channels, even ones that aren't
noisy. In fact, Shannon tells us that if tne chan
nel isn't making a lot of errors, you're not using
the channel to its fullest capacity. For example,
if you're communicating photographs from Nep
tune to Earth, say at the rate of one picture per
second, and everything seems to be going as well
as it could, you're fooling yourself. You should
be pushing the channel harder, maybe 10 pic
tures per second, right to the ragged edge of
failure, forcing the channel to make lots of
errors, and then correcting the errors, using
redundancy and pattern recognition. In this way
Shannon showed that every channel has an ulti
mate capability to transmit information, called
the channel's capacity or Shannon limit, and that
this limit can be reached only if the channel is
making lots of errors, which are being corrected
by the decoder like crazy. Shannon proved that
channel capacity is like the speed of light: with
a lot of work (building fancy encoders and de
coders) you can get as close to it as you like,
but you can never quite get there.

What Shannon did not do, however, was
to say exactly how the encoders and decoders
should be designed; he only showed that it must
be possible. The actual design task he left for
later generations, who have accepted that chal
lenge. (Thank goodness he left something for
us to do!) Today there are dozens of different
error-correction systems in practical use in a wide
variety of applications. I can't begin to describe
even a few of these error-correction systems in
the space of this article, so I'll content myself
with just one, which was invented in 1960 by
two MIT researchers, Irv Reed and Gus Solo
mon. Reed is now professor of electrical engi
neering at USC, and Solomon is a senior scientist
at Hughes Aircraft Company (and also a well
known teacher of integrated voice and movement).

Reed-Solomon codes, as they're now called,
began as only a theoretical curiosity, but today
they're probably the most widespread and gen
erally useful error-correcting code system. Reed
Solomon codes work, ultimately, with zeros and
ones (bits), but it's easier to understand what's
going on if you think not in terms of bits but of
bytcs-a group of eight bits. There are 256 pos
sible bytes, numbered from 0 to 255. Reed
Solomon codes protect data that has been
grouped into bytes; the data is in bytes, and the
redundancy is in bytes, but since the bytes are in
correspondence with the numbers 0 through
255, let's just pretend that they work on ordi
nary numbers.

Engineering & Science/Summer 1989 31

11.5

15.

12.5

10.

2.5

figure 3

3.6 ..

10.6 ..
8.2 ..

3.6
$

12.8
@

15.1 ..

1 ~~j
L-____________________________ __

11.5 figure 4

32 Engineering & Science/Summer 1989

So now let's see how Dr. Reed and Dr.
Solomon filled Shannon's prescription. We
shall see that the basic ideas are geometric:
the information to be transmitted is encoded
as part of a strong geometric patrern that
can be recognized even if it is partly garbled
by the channel.

Let's suppose, for example, that we want to
transmit just twO numbers, say 3.6 and 5.9,
from one point to another over a noisy
channel, and that we want to encode these
numbers before transmitring them, using
Reed and Solomon's ideas. To do this,
we first plot the two numbers geometrically,
and then join them with a straight line
(figure 1). This straight line began with
only two points, but of course now there
are lots of other points on it. Let's pick
four more of these points, spaced equally
along the line, which as you can see from
the figure are 8.2, 10.5, 12.8, and 15.1
(figure 2). We then use these four extra
numbers as the redundancy and transmit the
data plus the redundancy as the codeword
[3.6, 5.9, 8.2, 10.5, 12.8, 15.11. This
codeword has a very strong patrern: each
number is exactly 2.3 more than the previ
ous one.

Now let's send our codeword over the chan
nel, and let's say that two errors occur, in
the second and fourth positions, so that
[3.6, 10.6,8.2,3.6, 12.8, 15.1] is received
(figure 3). You can see that the straight
line patrern has been spoiled, but not
entirely obliterated, since four of the six
points still lie on a straight line. If we draw
a straight line through these four points, we
see that two of the points aren't on the line
(figure 4). But since we know that the
transmitted points all began on a straight
line, in order to recover from the errors, all
we have to do is move the wayward points
back onto the line (moving vertically, as
shown), and presto! the original codeword
[3.6, 5.9,8.2, 10.5, 12.8, 15.1] appears
(figure 5). Now the original information
[3.6 and 5.9] can be read off, and we have
communicated these numbers reliably
despite the channel noise.

40.

30.

20.

10.

40.

30.

20.

10.

40.

30.

20.

10.

figure 6

3.6
1.2

•

figure 7

figure 6

2.2

parabola

Although this was just one example, the
same process will always work. If the six
number codeword is su bjected to two or
fewer errors, no matter where the errors
occur, at least four of the received numbers
will still lie on a straight line, and if the
decoder draws that straight line, the errone
ous numbers can be moved onto the line
and corrected. If the channel is in an espe
cially bad mood, however, and three or
more errors occur, the system can fail. Can
you see why? (The answer is on page 36.)
If you want your codeword to correct three
errors, you'll need six redundant numbers;
and to correct four errors, you'll need eight
extra numbers, and so on.

I've just explained how Reed-Solomon cod
ing is used to protect pairs of numbers: you
connect the two points with a straight line,
add extra points on the line, etc. In prac
tice, of course, you might want to send
three or more numbers at once. How do
Reed-Solomon codes do this? To see how,
let·s consider another example. Suppose we
wanted to send the three numbers [3.6, 1.2,
2.2] over a noisy channel. We again plot
the three points geometrically (figure 6).
Unfortunately, these three points don't lie
on a straight line. But any three points will
determine a parabola, which is a second
degree curve, so let's draw a parabola
through these points (figure 7). Now that
we have the parabola, it's easy to guess
what to do next. We locate some more, say
four more, equally spaced points (equally
spaced horizontally) on the parabola, and
use these points as the redundancy, thereby
producing the codeword [3.6, 1.2, 2.2, 6.6,
14.4,25.6,40.2] (figure 8). The original
data had no particular pattern, but this
seven-number codeword has a very strong
pattern, because the seven points all lie on
the same parabola. (It's extremely unlikely
that seven numbers chosen at random would
lie on a parabola.)

40.

30.

20.

10.

140.

120.

100.

80.

60.

40.

20.

140.

120.

100.

80.

60.

40.

20.

40.2 .,

figure 10

11.6

majority parabola
~

.,

figure 11

cubic curve

figure 12

With four redundant numbers protecting
three pieces of data, we can again correct
any pattern of two errors. For example,
suppose the parabolic codeword [3.6, 1.2,
2.2,6.6, 14.4,25.6,40.2] were received as
[11.6, 1.2, 2.2, 6.6, 3.3, 25.6, 40.2], with
errors in the first and fifth positions. To
correct the errors, we'd plot the seven re
ceived numbers and look for a parabola
connecting five of them (figure 9). In this
case, it's a little difficult for us humans to
see the pattern, but the decoder (computer)
doesn't have any trouble, and finds the
"majority parabola" immediately (figure 10).
Two of the points don't lie on the parabola,
so the decoder moves them back on, thereby
correcting the errors. Again, with only four
redundant numbers, this particular scheme
can correct only two errors; to correct more
errors, more redundancy is needed, the gen
eral rule being that two redundant numbers
are needed for each error to be cortected.

What if we wanted to send four numbers
at once? Just as two points determine a
straight line, and three points determine a
parabola, four points determine a cubic curve
(figure 11). If we want to protect the four
numbers from three errors, say, then accord
ing to Reed and Solomon, we need to
choose six more points on the curve, thereby
producing the lO-number codeword [I 3 3. 1,
73.9,39.6,24.4,22.5,28.1,35.4, 38.6,
31.9,9.5] (figure 12). When this code
word is received, the decoder plots the
points, looks for a cubic curve that goes
through at least seven of them, and moves
the errant points back onto the cubic,
thereby correcting the errors.

Engineering & Science/Summer 1989 33

Uranus is 2 bil
lion miles away,
and Voyager's
transmitting
power is only 20
watts. That's
weaker than the
lightbttlb in your
refrigerator.

This "theoretical" discussion of Reed-Solomon
codes gives a pretty accurate idea of how they
work, but it's unrealistic in a number of impor
tant ways. As I mentioned earlier, Reed
Solomon codes deal with bytes, which are not
quite the same as ordinary numbers; and in real
applications, there are many more than two,
three, or four pieces of data in each code word.

\'Vhen I teach my students about Reed
Solomon codes, I try to make the subject more
practical by dividing the class into teams and
having each team write a computer program
capable of implementing a fairly powerful RS
code. In the particular code I give them, each
codeword consists of 15 data characters protected
by 16 redundant characters, where a "character"
is one of the 26 letters, A, B Z, or one of
the six additional symbols (space), ", #, $, %,
and &, so the students work, in effect, with a
32-letter alphabet. If they want to transmit the
15-letter word RUMPLESTILTSKIN, for exam
ple, their program must first compute the 16
characters of redundancy, which in this case turn
out to be RASZUOBUOS"&YTjS, so the code
word is

RUMPLESTILTSKINRASZUOBUOS"&YTjS

You may find this codeword unattractive; but to
the Reed-Solomon decoder, it's beautiful: the 31
characters (when interpreted as special kinds of
numbers) all lie on a 14th-degree polynomial
curve. With 16 redundant letters, the codeword
can resist any combination of eight or fewer
errors. For example, if we change the word to

R MCELIECETSKINRASZUOBUOS "&YTjS

34 Engineering & Science/Summer 1989

Reed·Solomon codes
made it possible for
Voyager 2 to send
back pictures such as
this one of geologie
details on Miranda,
one of the Uranian
moons.

On opposite page: Irv
Reed (right) and Gus
Solomon, who in·
vented their error·
correction system
in 1960.

(which I like better), and give it to the decoder,
it will see that the pretty pattern has been ruined
but will find that 23 of the 31 characters still lie
on a 14th-degree curve. (To do this, it uses an
algorithm invented by Elwyn Berlekamp, the
20-questions-with-lies guy, who's now a profes
sor at UC Berkeley and president of Cyclotronics,
Inc. a company that builds Reed-Solomon
hardware.) It will then force the eight offending
characters back onto the curve and give us

RUMPLESTILTSKINRASZUOBUOS "&YTjS

agam.
There are many applications of Shannon's

theorems in general, and Reed-Solomon codes in
particular, in today's technology. Error-correcting
codes are used in many high-performance mili
tary and civilian communication systems. For
example, the high-speed modems that today's
computers use to talk to each other are made
possible by fancy error correction, among other
things. One of the most spectacular applications
is in the exploration of the solar system. The
Voyager 2 spacecraft sent pictures of the planet
Uranus back to Earth in january 1986, using
what must be the most sophisticated and power
ful communication system ever built, on this
planet at least. (Uranus is 2 billion miles away,
and Voyager's transmitting power is only 20
watts. That's weaker than the lightbulb in your
refrigerator.) That communication system has
some pretty fancy error correction, which includes
a Reed-Solomon code with 223 bytes of data
and 32 bytes of redundancy in every codeword.
Of course, Voyager's communication system

Reed-Solomon
codes, as they're
now called,
began as only a
theoretical curi
osity, but today
they're probably
the most wide
spread and gen
erally useful
error-correcting
code system.

depends on a lot of other things too: big and
accurate antennas, low-noise receivers, sophisti
cated transmitters, and much more. Still,
without the error-correcting codes, Voyager
would have been able to send only about 20
percent of the data that it actually did send.

But applications to communications systems
are just half the story. Shannon's theorems have
also been applied to the storage of information,
not just transmission. If you think about it,
storage is another form of communication
communication in time rather than space; from
now to then rather than from here to there. Any
way, there are many storage systems that use
Shannon's prescription-computer tapes, disks,
and so on. In terms of dollars invested, one of
the most widespread applications of Shannon's
theorems (via Reed-Solomon coding, in fact) is
in data storage. If you own a CD player, then
you own a data-storage system that uses Reed
Solomon codes. It's all done using Shannon's
prescription, and zeros and ones.

A CD holds up to 74 minutes of music.
The music is represented digitally, using lots of
zetos and ones. In fact, it takes about 1.5 mil
lion bits to represent just one second of music,
and more than 6 billion bits are needed for the
entire 74 minutes. The bits are stored optically,
with tiny "pits" on the mirrorlike surface of one
side of the CD. These pits are recorded along a
spiral track on the disk, a track that is more
than three and a half miles long but only .5
microns wide (.5 microns is approximately the
wavelength of green light; that's why light is
scattered into a rainbow by the surface of the

CD). The pits range from 0.9 to 3.3 microns
in length. Such tiny features are quite suscepti
ble to errors; fingerprints, dust, dirt, abrasions,
and manufacturing irregularities can all cause
problems. So an error-correcting code is used
on these disks, and it turns out to be a Reed
Solomon code, in which the bits of information
were first blocked into eight-bit bytes. The
details are a little complicated (the industry's
acronym is "CIRC,' for "Cross-Interleaved
Reed-Solomon Code") but to protect the 6 bil
lion bits on the disk, another 2 billion error
correcting bits are added, so that fully 25 percent
of the bits on the disk are for error correction.
Your CD player at home contains a very sophis
ticated Reed-Solomon decoder, which processes
about 2 million coded bits per second.

The result of all this is that a CD is remark
ably resistant to errors. I have heard that you can
actually drill holes in a CD and it will still play,
and I know (since I've done it myself) that you
can deliberately scratch one with a paper clip
without losing any music. And because of the
error correction the music you hear from a
scratched disk isn't merely almost as good as the
original; it's exactly as good as the original. Of
course, if you get carried away and overdo it,
you might really wreck your favorite CD (which
is unfortunately what happened to my poor
Buddy Holly CD when we shot the photo on
page 26). Coding to combat malicious mischief
is beyond the scope of this article. D

Bob iHcEliece has been professor of electrical
engimering at Caltech since 1982. He's also an
alNmnlls (BS 1964, PhD 1967), as is 11';1 Reed
(BS 1944, PhD 1949). From 1967 to 1978
McEliece worked at jPL as sllpervisor of the infor
mation processing gr01Jp in the communications
research section, and then became professor of
mathematics at the University of Illinois at
Urbana-Champaign before retllming to his alma
mater. AfcElieee is especially well known for
applicatiollS of discrete mathematics to various
problems in commlf1Zicatioll theory.

This article was adapted from an Aprillf/at
son Lecture feattll-ing cOl7Siderabie audience parti
cipation. A good time was had by all, thanks to
AfcEliece's talent for making error-correcting codes
a lot of flln. Both Reed and Solomon were in the
audience at Beckman Auditorium.

If YOll haven't all-cady peeked, tum the page
for the allSwers to the problems posed in the article.

Engineering & Science/Summer 1989 35

Answers: Safety in Numbers

page 27

page 28

TIARA
ADAPT
TREND
NERVE
SPLIT

One possibility for six variations on a five
letter word was submitted by Paul Car
penter of Burbank after the \\1 atson Lecture:
STA?E

Doublets:

page 29

STAGE
STAKE
STALE
STARE
STATE
STAVE

LEAD
LOAD
GOAD
GOLD

The correspondence berween the eight pat
terns of YES-NO answers to the three
questions, "Is it A, B, C, or D?" "Is it A,
B, E, or Ft and "Is it A, C, E, or Gr is as
follows:

A: YES YES YES
B: YES YES NO
C: YES NO YES
D: YES NO NO
E: NO YES YES
F: NO YES NO
G: NO NO YES
H: NO NO NO

36 Engineering & Science/Summer 1989

To solve the 20-questions-with-lies problem,
it's best to think of each of the nine answers
as a vote against some of the letters. For
example, the first answer counts as one vote
against each of the letters A, B, C, and D;
the second answer is a vote against the
letters C, D, G, and H; and so on. In this
way, we can calculate a little table, giving
the votes against each of the eight letters:

A: 1, 3, 5, 6, 7
B: 1, 3, 4, 6, 7
C: 1, 2, 3, 4, 6, 7
D: 1, 2, 4, 6, 7
E: 3,6,7
F: 5,8,9
G: 2,4
H: 2,4,6,7

This table shows that, for example, A has 5
negative votes; in other words, if the letter
really were A, then I lied 5 times. Simi
larly, if it were B, I lied 5 times; if it were
C, I lied 6 times, etc. But since I agreed to

lie at most rwice, and all letters but G have
3 or more negative votes, the letter must
have been G, and I must have lied on
answers 2 and 4. (Notice also that all 9
questions were needed, since after 8
questions, both F and G were still in the
running.)

page 33

If [3.6, 5.9, 8.2, 10.5, 12.8, 15.1] is sent,
but received as, say [3.6, 9.1, 8.2, 10.5,
6.4,5.5] (with errors in positions 2,5, and
6), then four of the points (9.1, 8.2, 6.4,
and 5.5) lie on a straight line, but not the
original straight line! (figure AI). But the
decoder will have no way of knowing this,
and so will move the rwo points that are off
the line back on (figure A2) thereby produc
ing the "codeword" [10.0, 9.1, 8.2, 7.3,
6.4, 5.5] and reporting that the transmitted
information was [10.0,9.11.

12.
10.5

6.

4.

2.
figure Ai

4.

2.
figure A2

