


This was one of the 
first images ever to 
capture a high level 
of detail within a 
turbulent flow-detail 
enough to convince 
Benoit Mandelbrot 
(MS '48, Eng '49) that 
turbulence was an 
example of the class 
of mathematical 
creatures he called 
fractals. The picture 
was made by injecting 
a jet of water car~ing 
a fluorescent dye into 
a tank of standing 
water. A laser then 
sliced through the 
flow, lighting up only 
the dye molecules 
within that slice. 
From Dimotakis, 
Miake·Lye, and 
Papantoniou, Physics 
of Fluids, 1983. 

Thrbulence, Fractals, and CCDs 

by Paul E. Dimotaki.s 

Two and a half thousand years ago, the 
philosopher Heracleitus sat on the banks of 
a small river near the ancient Greek town of 
Ephesus, in Asia Minor, tossing little sticks into 
the water. As he watched them float irregularly 
downstream on the turbulent river, he remarked, 
"Twice into the same river you could not enter." 
Despite reasonably steady initial conditions (the 
spring is the same) and boundary conditions (the 
banks are the same), the turbulent flow in the 
river is never the same twice. Heracleitus put in 
a nutshell the problem that bedevils researchers 
in turbulence to this day-how can you analyze 
something that changes randomly and uncontrol
lably from moment to moment? 

Now, turbulence isn't always a curse. It 
is often a blessing-without turbulence, we 
wouldn't have much animal life on this planet. 
When we exhale, for example, our breath comes 
out as a little jet of gas that mixes with the sur
rounding air. Then, when we inhale, only a very 
small part of the exhaled carbon dioxide comes 
back in. Without turbulence, we would reinhale 
most of it, although, as my II-year-old son 
Manolis noted, not for long. And turbulent 
vortex rings shed from our heart valves are crucial 
in helping them close. It doesn't take a large 
change in the flow through the valve to alter its 
dynamics and cause life-threatening difficulties, 
as the work of Professor of Aeronautics Mory 
Gharib (PhD '83) and others is helping us 
appreciate. Any creatures that didn't master the 
dynamics of turbulence in their breathing and 
internal circulation, as well as in other important 
turbulent-flow phenomena (such as swimming 

While turbulence 
has captured peo
ple's imagination 
for millennia, the 
beginnings of our 
current under
standing date 
from the 1930s 
and 1940s. 

and flying) would have rapidly gone extinct. 
More broadly, we rely on turbulent mixing 

to sustain and drive all kinds of things, including 
many flow and combustion devices in which 
chemical reactions occur. Consider a jet engine, 
for example. Our ability to fly at high speeds is 
limited, in part, by our ability to mix fuel and 
air quickly and efficiently at flow speeds that are 
high compared to the speed of sound, i.e., at high 
Mach numbers. The inherent unsteadiness that 
leads to and sustains turbulence tends to dimin
ish as the Mach number increases. Flows that 
would be strongly turbulent at low Mach num
bers often aren't at high Mach numbers, and less 
mixing results. But at the same time that we're 
trying to maximize mixing within the engine, we 
need to minimize mixing (and thus heat transfer) 
in the flow along the engine's interior surfaces, so 
that they don't melt. Partly as a consequence of 
such considerations (and many others-flight, 
especially commercial flight, is a complex inter
play between economic as well as aerodynamic 
forces), we've been flying at the same speed for 
the last 30 years or so---except for the Concorde, 
which is not economically viable because of its 
high fuel consumption for its size. That's a 
remarkable statistic, considering commercial 
aviation's enormous progress in so many other 
ways. So, if you ask whether it will always take 
this long to fly across the Pacific, or to Eastern 
Europe, the answer partly depends on learning 
how to both promote and limit turbulent 
mixing. 

While turbulence has captured people's 
imagination for millennia, the beginnings 
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This shadowgraph, 
and others like it, 
provided the first 
evidence of large
scale order in turbu
lent flows. Here, a 
stream of nitrogen 
at four atmospheres 
pressure (left) travel
ing at 1,000 centime
ters per second blows 
by a helium-argon 
mixture (right) with 
the same density and 
pressure but traveling 
only 380 centimeters 
per second. The zone 
where they mix is 
made visible by their 
different refractive in
dices, in exactly the 
same way that you 
see heat shimmers 
when looking across 
a blacktop parking lot 
in August. From John 
H. Konrad's PhD 
thesis, 1976. 

of our current understanding date from the 1930s 
and 1940s, when ludwig Prandtl in Germany, 
Theodore von Karman at Caltech, G. 1. Taylor 
in England, A. N. Kolmogorov in the then Soviet 
Union, and others elsewhere proposed that 
descriptions based on local averages and other 
statistical tools such as spectral analysis could 
provide useful information about the nature of 
turbulence, and that it was possible to describe, 
and even predict, some aspects of turbulent flows. 
Because turbulence is chaotic, irregular, and non
deterministic, statistical treatments appeared to 
be the only possible way to describe it. These 
methods often work well, in fact, but it's difficult 
to extract much information from them about 
many properties of turbulence-such as drag, 
entrainment, and mixing-that are important 
to engineers. 

Then, in the late '60s to early '70s, largely 
as a result of experiments initiated at Caltech 
by Garry Brown, then a research fellow and later 
a professor of aeronautics (and now head of 
Mechanical Engineering at Princeton), and 
Anatol Roshko (MS '47, PhD '52), von Karman 
Professor of Atronautics. Emeritu'i, the picture 
changed. Brown and Roshko found that, despite 
its obvious disorder, turbulent flow is organized 
to a fair extent, primarily at its largest scales, as 
shown in this photo (left) by one of Roshko's 
students. The dynamical properties that engi
neers were struggling to understand depended on 
the behavior of these large-scale structures,> which 
were present even in intensely turbulent flows. 
These discoveries provided hope that it would be 
possible to describe the dynamics of turbulence 
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in relatively simpler terms than previously 
thought necessary. Heradeitus' epigram didn't 
sound so daunting anymore. You still couldn't 
step twice in the same rivet, but at least you 
could describe the river better. 

From the days of von Karman, much of the 
progress in turbulence has rested on the use of 
flow-visualization techniques. It's difficult to see 
a complicated, nonperiodic geometrical pattern 
in a sequence of numbers, when such a pattern 
may be obvious from a casual glance at a photo
graph. Our brain has an uncanny ability to 
decipher complexity and discover order in visual 
data. A two-year-old can look at a drawing and 
tell you whether it's a cat or a dog; that distinc
tion cannot be made easily using the largest 
conventional computers. 

Unfortunately, such visual data tended to be 
"soft" back then, because extracting quantitative 
information from pictures was difficult. The data 
were recorded on photographic film. a few mea
surements were made from the pictures, and a 
limited statistical analysis was laboriously done 
by hand. The "hard" mathematical tteatmellts 
that most re'iearchers were interested in mostly 
relied on point measurements. You'd put an 
instrument, or an array of instruments, in the 
flow and get a series of readings as the flow 
moved past the array. Only a few numbers
mean values, or, at most, spectra from wave 
analyzers-were recovered. The rich continuum 
of spatial and temporal properties of turbulence 
could not easily be discerned in such data. 

In retrospect, the evidence of large-scale order 
in turbulence can be seen in the old point-mea-



The laser-induced 
fluorescence appara
tus (left) is essentially 
a high-tech aquarium 
on a stand. The jet, 
tagged with a fluores
cent dye, shoots 
straight down from 
the plenum, whose 
lower surface is 
immersed in the 
reservoir water. 
A rotating mirror 
of adjustable height 
sweeps the laser 
rapidly through the 
flow perpendicularly 
to its direction of 
travel, illuminating a 
cross section of the 
flow (right). The CCD 
camera then records 
the frozen slice of 
turbulence through 
the tank's glass 
bottom. With slightly 
different optics, the 
system can also take 
slices along the flow's 
axis, as in the picture 
on page 30. 

-1rgon ion 1 a it'r CCD camera 

surement data, but it was so contrary to expecta
tions that it was overlooked. In the late '40s, for 
example, Hans W. Liepmann, now the von Kar
man Professor of Aeronautics, Emeritus, but then 
a young Caltech professor, was analyzing point
velocity data from a hot-wire array and found 
strong evidence that the points near the edge of a 
turbulent flow were only turbulent intermittent
ly. Brown and Roshko's experiments some 20 
years later showed why: the probe was periodical
ly being engulfed by the largest vortices-the 
ones you can see in the photo on the opposite 
page-in the same way that a piling just above 
the tide line gets immersed in the swash from 
each breaking wave. Liepmann also noticed that 
these vortices tended to pair up. However, von 
Karman pooh-poohed the results, and there the 
matter stood for two decades. 

Today, with the advent ofCCD (charge
coupled device) cameras, and the image-compres
sion and data-handling technology developed by 
Caltech's Jet Propulsion Laboratory (JPL) and 
elsewhere to send us breathtaking images from 
planets we will not be able to visit ourselves in 
the foreseeable future, we can record two-dimen
sional information at a million or more points 
simultaneously, with an accuracy that matches 
yesterday'S best point-measuring instruments. 
A 1 ,OOO-x-l,OOO-pixel CCD array is equivalent 
to placing one million measuring instruments in 
the flow, all recording at the same time without 
disturbing the flow or getting in each other's 
way. 

Back in the mid-1970s, our lab at Caltech 
was the first to develop laser-induced fluorescence 

techniques for fluid mechanics. Coupled with 
digital CCD imaging, these methods have pro
vided quantitative, multidimensional (field, as 
opposed to point) flow measurements. (We used 
the first [linear} CCD arrays at about the same 
time.) Much of our work has focused on turbu
lence generated by shooting a jet of water, tagged 
with a fluorescent dye, into a reservoir of quies
cent, untagged water. A laser selectively excites 
the dye, which fluoresces with an intensity pro
portional to its concentration. A CCD camera 
then records the fluorescence, which shows how 
the jet fluid mixes with the entrained reservoir 
fluid. By rapidly sweeping a laser across the jet 
(or pulsing a sheet of laser light) we can, in effect, 
freeze any slice of the flow at an instant of time. 

With this dense, quantitative turbulent-flow 
data, we can begin to ask questions about the 
complex geometry that turbulence generates. 
Geometry, to most people, brings to mind trian
gles and circles, spheres and cubes-the simple, 
regular shapes that fascinated the ancient Greeks. 
Well, turbulence isn't so kind. It generates 
irregular shapes that aren't amenable to the 
analyses that Thales of Miletus (near Ephesus); 
Pythagoras, a short swim away from Ephesus on 
the island of Samos; and many others developed, 
and that were so eloquently documented by 
Euclid in Alexandria in the third century B.C. 
How do we describe the geometric characteristics 
of the interface between the jet fluid and the 
entrained reservoir fluid in the photo on page 22, 
for example? How can we measure that inter
face's surface-to-volume ratio (a way of quantify
ing mixing), and determine whether it increases 
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The coastline of Brit
ain remains crinkly, 
whether you're look
ing at the entire thing 
(top), or just the part 
along the Irish Sea 
(middle), or just 
Solway Firth (bottom). 
If you tiled the entire 
map like a bathroom 
floor and then count
ed how many of those 
tiles covered some 
piece of the shoreline, 
you'd have a measure 
of how long it was. 
And if you made the 
tiles smaller and 
smaller, the measured 
length of the coastline 
would get longer and 
longer. 
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or decreases as the flow velocity increases? 
A very exciting development took place about 

20 years ago, when Benoit Mandelbrot (MS '48, 
Eng '49) coined the term "fractal" to describe the 
geometry of irregular objects, and suggested that 
special tools previously limited to a relatively 
arcane branch of mathematics could be applied 
to study such a geometry. His idea was that a 
fractal object looks equally complex, no matter 
at which scale you choose to examine it. You can 
zoom in on a small piece, or pull back and look at 
the whole thing, and it will look similarly com
plex. A coastline, for example, looks convoluted, 
whether you're looking at the entire coast of 
Britain, or just the part along the Irish Sea, or 
just Solway Firth, or just the harbor at Kirkcud
bright, or just a piece of the rocky strand at low 
tide. 

The ideas behind fractal mathematics had been 
put forth in bits and pieces by many people, but 
were first applied to natural phenomena by Lewis 
Fry Richardson, who, in a paper published post
humously in the early '60s, actually did a fractal 
analysis (he didn't call it that, of course) of Brit
ain's coastline. Imagine that you have a map of 
Britain, and you're trying to describe how crin
kly the coastline is. There are several possible 
approaches, but a good one is to draw a so-called 
bounding rectangle that just barely contains the 
coastline. You then fill the rectangle with con
tiguous, nonoverlapping tiles and count how 
many of them cover some segment, however 
small, of the coast, including all the nearby 
islands. As we make the tiles smaller arid smal
ler, we need more and more of them to. cover the 



Plotting the logarithm 
of the number of tiles 
needed to cover the 
coastline, N(Ie}, versus 
the logarithm of the 
tile size, Ie, should give 
a straight line whose 
slope, D, is the fractal 
dimension. But the 
line isn't exactly 
straight, so D goes 
from 2 when the tiles 
are large down to 1 
when the tiles are 
tiny. 

0' 
u 

log A 

D;::;;1.3 

, D ~ 2 

same coastline. We can plot the logarithm of 
the number of coastline-covering tiles, N(A), for 
a given tile size, A, versus the logarithm of A. 
According to Richardson and Mandelbrot, we 
should get a straight line with a negative slope, 
i.e., 

log N(A) = -D log A + constant 
In this expression, the negative slope, D, is a con
stant, which means that the number of coastline
covering tiles is: 

N(A) DC A-D 

This is a power-law relation, because N(A) 
depends on a variable (A), raised to a constant 
power (-D). The exponent, D, is called the 
fractal dimension. If the coastline is straight, 
then D = 1, corresponding to a one-dimensional 
object, i.e., a line. If the coastline is all scrunched 
up and visits nearly every point in the interior of 
the bounding rectangle that contains the tiles, 
then D is closer to 2, and the coastline approaches 
the solidity of a two-dimensional object. For the 
west coast of Britain, D is about 1.3, which 
means that the British coastline is not as baroque 
as, say, the fjords of Norway, for which D is 
about 1.5. 

But, if you look at the log-log plot ofN(A) 
versus A more closely, you see that the line isn't 
exactly straight. At first, each time we cut the 
tile size in half, the number of tiles that contain 
a part of the coastline (however small) is squared. 
D still equals 2, in other words. This is because 
if you're cutting very large tiles, each smaller 
piece will still cover some stretch of shore. The 
subdivided covering tiles still fill the entire 
bounding rectangle, as for a two-dimensional 

object. This is called the embedding dimension, 
because our fractal island (of dimension 1.3) lives 
in a two-dimensional space. At the other end of 
the curve, for very small tiles, the plot's slope 
approaches 1. This is because you now need as 
many tiles as the "arc length" divided by the tile 
size, A. The arc length is simply a number-the 
length of the coastline as it's drawn on the map. 
This geometric figute is represented down to a 
particular resolution, and thus has a correspond
ing arc length, even though the actual object
the coastline itself--effectively does not. And 
since the real object is approximated on the map 
by a line, which is a one-dimensional entity, we 
call this the topological dimension. 

The fractalists say we understand the slope = 2 
region and the slope = 1 region. So we'll ignore 
those extremes and study the region in between, 
where we hope D has some fixed intermediate 
value. For the most part, fractals discussed to 
date have been of this power-law variety and 
describe objects whose complexity is the same 
regardless of scale. Mandelbrot, in fact, adopted 
this attribute as the defining property of fractals. 

Our first laser-induced fluorescence photos 
were taken in a small fish tank in 1976, as part of 
a research project with Rick Miake-Lye (BS '78), 
at about the same time that Mandelbrot was 
formulating his proposals. Mandelbrot visited 
Caltech in the late '70s, and I showed him our 
pictures. He was very excited and asked for a 
slide of the pictute on page 22. He presented it 
at the physics colloquium he gave later that day 
as a clear demonstration of fractal behavior in 
turbulence. He even referred to it as such in the 
subsequent edition of his book on fractals. But 
we had already spent some time trying to do a 
fractal analysis of that picture, and tried again 
after he left, and could not get a power law. 

I hesitated to publish this counter-result, how
ever, because it was just one picture. Perhaps no 
power-law behavior emerged because our statisti
cal sample simply wasn't big enough. Every pic
ture is different-Heracleitus's insight: the river 
is not the same twice-so several pictures would 
have had to be analyzed, and average tile counts 
computed for each value of A. However, our 
analysis methods back then were primitive and 
very time-consuming. I projected the slide on a 
lecture-room wall, and tried to measure N(A.) by 
counting the number of times a A-length string 
was needed to get from one end of a contour line 
to the other-the technique Mandelbrot had 
recommended. 

At this point, I should explain what, exactly, 
we were measuring. What is the "coastline" of a 
turbulent jet? There are actually many lines one 
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A quick lesson in 
chaos management: 
You start with some 
raw data (top)-a 
succession of random 
peaks and valleys
and you pick an eleva· 
tion, such as the hori
zontal line. The set of 
all points at that ele· 
vation (the heavy 
dots) is called a "level 
set" and preserves 
the random qualities 
of the original data. 
You can now use line 
segments as tiles of 
size A (bottom), and 
count how many seg
ments it takes to 
cover all the data 
points in the level 
set. 

1_11 ...... 1 __ 11 ......... _111_-

can measure. Since the dye fluoresces in propor
tion to its concentration, given a laser sheet of 
uniform intensity all points of equal brightness in 
the image will correspond to the same concentra
tion of jet fluid. Connecting all points of equal 
concentration on the image gives a set of contour 
lines-analogous to the elevation contours on a 
topographic map-called isoconcentration lines, 
or isocontours. Isocontours are also called "level 
sets," because every point in the set is at the same 
level-the same elevation in a topographic map, 
or, in this case, the same concentration. We 
approximated these isocontours photographically 
by varying the exposure while making a set of 
high-contrast prints (or slides) of each image. 

So collecting enough data by hand to provide 
decent statistics would have been unthinkable, 
but getting the images into a computer for 
analysis was also difficult. We graduated from 
measuring isocontours off the wall to using a film 
scanner at JPL to get the image in digital form. 
However, even with the scanner, it was still so 
laborious to analyze a single picture that doing 
many of them was not in the cards. Also, despite 
the novelty of Mandelbrot's fractal ideas, it wasn't 
clear whether this approach was leading any
where, and I didn't dare ask students to spend 
much time on it. 

But even after we finally learned how to do a 
computerized analysis, we still weren't home free. 
There were problems with the way we were esti
mating the fractal dimension. We called our 
method the "stretched-string" algorithm because 
that was how we had done it on the wall. Just as 
a rock climber negotiates a tricky face by securing 
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a safety rope to pitons at closely spaced intervals, 
the computer belayed an imaginary string from 
a point on the isocontour that had been reached 
by stretching the string from the previous point 
reached in the same way, and continued to do so 
until a complete circuit of the eontour had been 
made. Unfortunately, the coverage counts thus 
derived were not unique, because there were 
often many choices of where to place the other 
end of the string, which led to different counts. 
And the stretched-string algorithm could cheer
fully yield fractal dimensions that exceeded 2 for 
two-dimensional data, which we regarded as 
nonsensical. 

We really had to wait until we could use 
digital imaging, initially in the form ofa linear 
CCD array oriented perpendicularly to the jet's 
axis, to acquire good data in bulk. In those days, 
you couldn't buy a digital camera. You beat the 
bushes until you found a manufacturer who'd sell 
or give you a noisy CCD chip. Then you built all 
the electronics around it, converted the voltages 
to numbers with expensive and difficult-to-use 
analog-to-digital converters, and recorded the 
numbers any way you could. We had to develop, 
from scratch, the electronics to acquire and store 
digital data for subsequent computer processing; 
a technology we've been refining ever since. Our 
setup was first used for fractals in 1985, as part 
of an Aeronautics 104 class project by grad 
students Sheldon Green (MS '85, PhD '88) and 
Giancarlo Losi (MS '85, PhD '90). Able now to 
record digital records in the computer from the 
start, we could gather enough data to obtain 
reliable statistics. Our results continued to be 
inconclusive, however, and I still did not wish to 
venture a publication. The stretched-string algo
rithm remained troublesome, among other issues. 

By the late '80s, we had done enough thinking 
and doodling that we decided we could design an 
experiment to settle at least some of these issues 
once and for all. Grad student Paul Miller (MS 
'87, PhD '91) and I began using laser-induced 
fluorescence to make long, digital records of the 
jet fluid's concentration, as a function of time, 
at a fixed point on the jet's axis. These plots 
looked like a slice through a very jagged moun
tain range-peaks and valleys in succession. We 
then selected all the points in time where the jet
fluid concentration crossed a fixed threshold-the 
one-dimensional analog of an isocontour-and 
"tiled" them withline segments, again counting 
the number of (one-dimensional) tiles required to 
cover the threshold-crossings as a functio~ of tile 
size. And, having abandoned the stretched-string 
algorithm in favor of contiguous, nonoverlapping 
tiles, we also revisited the linear-array data from 



Below: This plot of 
fractal dimensioll, ·D, 
versus the logarithm, 
of the tile s·ize, A" was 
calculated .from the 
one·dimensional 
temporal data. If the 
data had a power· law 
fractal region. it 
would appear as a 
horizontal plateau (or 
at least a kink) in the 
curve. After Dimo· 
takis, Nonlinear 
Science Today, 
1991. 
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Below: Noisy data can 
give your level set a 
lot of spurious memo 
bers. In this example, 
the real signal (heavy 
line) crosses the cho· 
sen elevation (dashed 
line) twice and twice 
only. But when this 
data is cloaked in 
noise (light line), 
scores of new points 
appear. To make 
matters worse, the 
new points don't just 
surround the real level 
crossings, but can 
also appear where 
the original signal 
approaches. but does 
not cross, the chosen 
elevation. Fortunate· 
Iy. during World War II. 
Norbert Wiener pro· 
posed a very clever 
scheme (classified at 
the time, declassified 
later, but not well 
understood until 
later still. when it was 
described by someone 
else) for recovering a 
signal from noisy data 
and computing its 
level crossings quite 
reliably. After Miller 
and Dimotakis, Phys· 
ics of Fluids A, 1991. 

Sheldon and Giancarlo's Ae 104 experiment
still luxuriously spinning on a disk in our 
computer network-and calculated one- and 
two-dimensional tiling statistics for them too. 

Our new, one-dimensional, temporal data 
produced statistically reliable tile-coverage counts 
with a logarithmic slope that smoothly increased 
from 0 to 1. Similarly, the space-time data from 
the Ae 104 experiment yielded a slope that 
smoothly increased from 1 to 2. In neither case 
did the fractal dimension (the slope, D) pause 
at any particular value. No power-law region 
apptared. J should note that, by then, many 
investigators had reported having found a con
stant fracral dimension in all kinds of f1ow~, and 
I ht' same fractal dimension to boot,. So ours was 
a vtry controversial result. We were comfortable, 
howeler, \vilh the care we had expended in our 
analyses to eliminate the inHuence of noise on the 
data and to understand the suhdeties of tht, vari
ous algorithms from determining N(A). And as 
our earlier dara had prepared LIS for a curve, \ye 

did not attempt to fit a straight line to the log 
N(A) versus log A plot, which would of course 
have given us a constant dimension. It took 14 
months to get the paper, which was eventually 
published in 1991, through the reviewing cycles: 
answering all the reviewers' queries and objec
tions, documenting that we'd addressed and 
eliminated all sources of error, and, incidentally, 
doubling the paper's length in the process. 

There could no longer be any question, at 
least in our minds, that turbulence generated 
level sets of smoothly varying fractal dimen
sion-i.e., a continuous dependence ofD on tile 
size-whose values were bounded by the topolog
ical dimension from below and the embedding 
dimension from above. There was no choice but 
to extend Mandelbrot's inspired proposals
insistence on uniform geometric complexity, 
regardless of scale, had to be abandoned if fractals 
were going to be useful in describing turbulence. 
Mandelbrot's original (power-law) fractals had 
to be regarded as an important special case of a 
broader mathematical framework, but a special 
case nevertheless. 

Our paper caused a lot of confusion. Was 
Pasadena turbulence again different, as had been 
alleged in the early '70s, when large-scale behav
ior was discovered? Was it because we had 
primarily relied on temporal data, even though 
the scant spatial data we had analyzed were also 
in accord? So Haris Catrakis (BS '91, MS '91, 
PhD '96) and I forged ahead to see if our conclu
sions would survive the test of time and the 
results of improved experiments. 

By then, CCD technology had progressed to 
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Top: A two~dimension~ 
al slice of a turbulent 
jet, taken with the 
apparatus described 
on page 25. The 
colors represent the 
jet fluid's concentra
tion. Blue is the most 
dilute, while green, 
orange, red, and yel. 
low are progressively 
more concentrated. 
Bottom: The heavy 
line is an isocontour 
calculated from the 
same image. Several 
"islands"-secondary 
isocontours outside 
the main one-and 
"Iakes"-secondary 
isocontours inside 
the main one-can be 
seen. From Catrakis 
and Dimotakis, Jour· 
nal of Fluid Mechan
ics, 1996. 

where we could record two-dimensional spatial 
data (i.e. , images) that were almost as good as 
previous point measurements. (A typical image 
appears at left.) These two-dimensional, laser
induced fluorescence slices, oriented perpendicu
lar ro the jet axis, allowed us ro give the irregular 
geometry of two-d imensional isocontours the 
same rigorous statistical treatment that was only 
possible in one dimension before. And more 
powerful data-acquisition, scorage, and processing 
systems allowed us [Q analyze several isocontours 
for each Reynolds number from images recorded 
over a range of Reynolds numbers. 

The Reynolds number measures the relative 
importance of viscous diffusion in a flow. If the 
Reynolds number is low, viscous effects are 
important, and viscous damping prevents flow 
fluctuations and turbulence. For example, flow
ing honey has a very low Reynolds number and 
is hard to make turbulent. But the Reynolds 
number increases with flow speed, so water, for 
example, can easily be at a high enough Reynolds 
number to be turbulent. If you fill your bath
room sink very slowly, the water necks down 
as it leaves the faucet and you get a nice, smooth, 
laminar flow . If you turn the water up, the flow 
suddenly becomes unsteady. The Reynolds num
ber has crossed a crit ical value above which the 
small , inevitable fluctuations in the flow in the 
pipe supplyi ng the faucet are amplified and 
sustained by the flow's kinetic energy. Viscous 
damping is no longer sufficient to keep the flow 
calm. This doesn't mean that flows above some 
critical Reynolds num ber are always turbulent, 
only that turbulence requires a minimum 
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Reynolds number to be sustained. 
Haris has made many important contributions 

inthe course of his PhD research, but to make a 
long story short, the new images yielded the same 
fractal behavior as our previous data-a continu
ously varying D that spanned its possible range 
of values (in this case, from 1 to 2). This held 
true throughout the Reynolds-number and 
isocontour ranges we investigated. In summary, 
our experim.ents suggest that turbulence geAer
ates structures that are not equally complex at 
all scales. Instead, turbulence is more complex 
at larger scales (larger D), and less compbc at 
smaller scales (~malltr D), with J. wntinuously 
variable D(A) required to describe it. Haris has 
also found reports of such geomerric behavior 
from other fields, tt)r examplr: 111 the analysls of 
alveolar tissue from rabbit lungs (the alveoli are 
the little sacs where gases exchange into and out 
of the bloodstream, so a high surface-to-volume 
ratio is obviously desirable), and in cloud-shape 
distributions. We've decided to call this variable 
D(A) the "scale-dependent fractal dimension," 
and geometrical figures that display it "scale
dependent fractals," to distinguish them from 
the original "power-law" fractals. 

So what have we learned from all this? We've 
recently realized that if you know the DO,,) curve, 
you can work backward and compute the distri
bution of spatial scales in the flow. In particular, 
you can say what the distribution of nearest 
distances to an isocontour is. Paul Miller had 
discovered this, in an inverse way, in the one
dimensional temporal data-a result we included 
in the 1991 paper. He used a random-number 
generator to sprinkle points on a line with a 
statistical distribution of his choosing to see 
what distribution gave a D(A) that looked like 
the turbulent-jet data. He found that if the point 
spacings were log-normally distributed (that is, if 
the logarithms of the distances between succes
sive pairs of points had a Gaussian distribution
the classic bell-shaped curve) then a fractal analy
sis of those spacings gave a D(A) that very closely 
matched our one-dimensional data. 

Haris and I have extended that to higher 
dimensions. Of course, what you mean by "spac
ing" in two dimensions must be defined, because 
it can be measured in many ways. In this con
text, we measure it as the (distribution of) sizes 
of the largest tiles, randomly placed, that do not 
touch the level set-the isocontour-at any 
point. Similarly, in three dimensions, one would 
be placing a box so it doesn't touch an isosurface, 
the level set in that case. We've also studied the 
size distribution of isocontour islands and lakes 
in our two-dimensional data. In this case, since 

we're talking about distinct objects, we can 
define "sizes" more naturally as the square roots 
of the individual areas-if the island or lake were 
square, its size would be the length of its edge. 
We found that this size distribution is also log~ 
normal. Nature often generates log-normal 
distributions whenever it merges or subdivides 
things, and turbulence, in a way, makes islands 
and lakes by the fusion and fission of eddies. 
Turbulence takes a large eddy, strains it, splits 
it into smaller eddies, and then again into smaller 
ones yet. It also merges eddies to make larger 
ones, and merges those again to make bigger ones 
yet, producing a very rich distribution of shapes 
and sizes. The largest eddies are bounded by the 
full spatial extent of the tutbulent region, while 
the smallest ones have sizes dictated by viscosity 
and, in the case of concentration data, diffusion. 

What does this mean in the real world? These 
geometrical properties are important in describ
ing the non-premixed combustion of hydro car
bons, for example. If we ignite aviation fuel in 
a jet engine, the burning rate is typically not lim
ited by the rate of the chemical reaction of fuel 
and oxygen in air. The limiting factor is the rate 
at which the fuel mixes with the air and finds the 
oxygen it needs to burn, which is almost entirely 
determined by the characteristics of the turbu
lence that brings the two reactants together. 
The burning is confined to the unsteady, three
dimensional surface on which the mixture of fuel 
and oxidizer is at the stoichiometric ratio-the 
ratio at which the two will completely consume 
each other, with no leftover fuel or oxygen. This 
constant-concentration surface is also a level set, 
like the ones we've been studying in our water 
jets. Knowing the statistics of the distance distri
bution from a point to that isosurface tells us how 
far the fuel has to diffuse to meet the oxygen, or 
vice versa. Premixed combustion, as in an inter
nal-combustion engine-in which fuel and air are 
mixed ahead of time and ignited later on--occurs 
on an equally complex combustion surface (of 
more-or-less constant temperature), which can 
also be treated as a level set. 

One has to be careful when extrapolating our 
water-tank results to air, however, because of the 
differing diffusion properties of the two fluids. 
From a molecular viewpoint, a gas is mostly emp
ty space. If you mix two gases rogether, the mol
ecules go zipping past one another and carry their 
momentum some distance between collisions
there's a long mean free path. The diffusivity of 
mass (the molecules) and the diffusivity of their 
momentum is very nearly the same. But in a 
liquid, the molecules are, effectively, in contact 
with one another. There's no such thing as free 

Engineering & SciencelNo. 3, 1996 31 



flight. You can transport momentum without 
transporting the molecules themselves, as hap
pens in those toys with a row of hanging steel 
balls-you hit the ball at one end and the ball 
at the other end takes off. Momentum has been 
transported with almost no transport of mass. 
To transport a molecule some distance in a 
liquid, many other molecules have to get out of 
the way. This doesn't happen easily, so the diffu
sion of molecules in a liquid is about a thousand 
times slower (slower still for a large molecule) 
than the diffusion of momentum. For a chemical 
reaction to proceed, it is individual molecules 
that must mix, not their momentum-we have 
to get the acid to meet the base, or the fuel to 
meet the oxygen. 

In the midst of all this fuss about such images, 
we should not forget that turbulence is not two
dimensional. It's a three-dimensional process 
that evolves as a function of time, so it's really 
a four-dimensional phenomenon. To look at 
this, we would need to capture three-dimensional 
data-ideally, as a function of time. One way to 
do this is to slice the flow very thinly, very quick
ly-before it changes-and assemble the slices 
into a three-dimensional image. Kelley Scott (BS 
'84) tried to do this as a SURF (Summer Under
graduate Research Fellowship) project over ten 
years ago, but the technology was not there. 
Werner Dahm (PhD '85) finally did so at the 
University of Michigan after leaving here, but he 
used low spatial resolution and low flow speeds 
(low Reynolds numbers); it's easy to appreciate 
that the data rates required for decent spatial and 
temporal resolution quickly push this approach 
beyond the reach of present-day technology. 

But in the last few months, we've managed 
an early peek at what such data might look like. 
Dan Lang (BS '76, MS '77, PhD '85), the group's 
expert in electronics and many other things, has 
integrated a new CCD into a digital camera and 
high-speed data-acquisition system that records 
at a resolution of 1 ,02 '~-x-l ,()21 pixels with an 
excellent signal-to-noise ratio. Designed by Jim 
Janesick, Andy Collins, and other digital-imag
ing wizards at JPL, this CCD is a spare late-tech
nology chip whose sibling will be or1 the upcom
ing Cassini mission to Saturn. Haris, Dan, and I 
have used the system to assemble some of the first 
three-dimensional, high-resolution data sets ever 
taken of turbulence. We recorded successive 
image slices in a flow for which a rate of one 
frame per second was almost fast enough. (By 
contrast, TV cameras, which have much lower 
resolution and signal-to-noise ratio, generate 30 
frames per second.) We got our first peek at the 
data by computing some isosurfaces from a small 
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portion of that space-time data, using about 
60,000 polygonal facets to render each isosurface. 
Now David Laidlaw (MS '92, PhD '95), a postdoc 
in computer science, has rendered a much larger 
portion of the image data using up to 3,000,000 
polygonal facets per surface. One of his images 
appears on the cover of this magazine. 

And we continue to push forward-we can 
now achieve a framing rate 10 times higher than 
that first effort, yet with the same spatial resolu
tion and signal-to-noise ratio. Or, by "binning," 
i.e., summing 2-x-2-pixel regions on the CCD 
before reading them out, we can read 512-x-512 
images at 20 frames per second. To study fully 
developed turbulent flow, however, we estimate 
we would need a resolution of no less than 1,000-
x-1,000 pixels per frame, read out at something 
like 1,000 frames per second, at Reynolds num
bers large enough for bona fide turbulence. This 
translates into a minimum of a billion pixels per 
second, or, if we digitize the data stream at 12 
bits per pixel, a data rate of 1.5 gigabytes per 
second. Dan is currently developing this kilo
frame-per-second system. 

We're also improving related laser-imaging 
technology so that we can study gas-phase turbu
lent mixing. To date, we've used water as our 
fluid because it's a thousand times denser than 
air, so we can get much more fluorescence signal 
per unit volume. We hope that, in a few years, 
we'll be able to compensate for the three-order
of-magnitude signal loss we'd encounter if we 
probed gas-phase flows. In fact, we're almost 
there now, after recent advances in gas-phase 
imaging made by Senior Research Fellow Dom
inique Fourguette. Since the same flow equations 
describe gases and liquids, comparing liquid- and 
gas-phase flows directly will be tremendously 
valuable. The only difference would be in the 
diffusivity of mass, so we'll be able to take a very 
complex phenomenon and change only one dial, 
leaving everything else the same. Any differences 
will then be attributahlf to turning rh'lt Of1f dial 
That's extremely valuable in science, so we're very 
excited by the prospect. 

And finally, there's the issue of supersonic tur
bulence, whose nature is largely terra incognita. 
We need to make progress there if we're to fly 
faster than we do now. The usual theories of tur
bulence, even on the level of von Karman, Taylor, 
and Kolmogorov, don't apply beyond the speed 
of sound, because the basic assumptions on which 
they rely are no longer valid. To study supersonic 
turbulence, one needs some way of recording the 
instantaneous velocity field-the simultaneous 
velocity of every point in the flow at one instant 
in time. This has not been possible, to date. A 
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few years ago, Phil Tokumaru (MS '86, PhD '91) 
and I took some first steps in that direction by 
developing a method to deduce the velocity field 
from flow images recorded in quick succession. 
We call this method Image Correlation Velocim
etry (ICV for shorr), and it looks for the mapping, 
or displacement field, that turns one image into 
the next one. The velocity field is then the dis
placement field divided by the time between suc
cessive images. Grad srudent Galen Gornowicz 
is now helping improve the method, which we've 
tested on a few toy flows: mapping the velocity 
field around an accelerating wing section whose 
performance is known, for example, and measur
ing wind speeds on Jupiter from a pair of images 
obrained from J PL. Our method works for the 
simple laboratory tlows we've tested it on thus 
far, and we've been told by our friends in plane
tary science that our Jovian wind speeds are right. 
To use this method, however, one needs high
signal-to-noise-ratio images that are close enough 
in time to be reasonably well correlated. To do 
this in a supersonic flow, we have to solve the 
gas-phase-imaging problems mentioned above 
and record images as close as a few microseconds 
apart. So our JPL friends have designed and 
helped us fabricate a CCD that can record two 
high-signal-to-noise-ratio images with the requi
site microsecond-scale spacing, which can then be 
read out and digitized at ordinary framing rates. 
We call this device the "Mach-CCD," after the 
flow speeds it is intended to decipher. We're 
bench testing it now. 

There's a need for improved digital imaging 
in many fields. Chris Martin, professor of phys
ics, and astronomy grad student Brian Kern have 
built a system that records optical phase-front 
distortions-the twinkle in starlight. Dan and 
I used our Cassini CCD camera system, in parallel 
with their system, to record 10- and 20-frame
per-second sequences of high-quality, short
exposure images on the 200-inch Hale Telescope 
at Palomar. In this collaboration, the hope is to 

understand how atmospheric turbulence causes 
optical distortion and test ideas for correcting it. 
Excited by these prospects, we've decided to up 
the specs of the kiloframe-per-second system that 
Dan is developing so that it will be able to run at 
that data rate for longer times, for both turbu
lence and astronomical applications. Scott Fraser, 
the Rosen Professor of Biology, and Professor of 
Physics Jerry Pine are interested in applying this 
capability to biological imaging, and we look 
forward to working with them. In these and 
other areas, the ability to follow high-resolution, 
high-signal-to-noise, two-dimensional data in 
millisecond or smaller time intervals would put 
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So that's where 
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awaits the devel
opment of a new 
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allows a better 
view of nature, 
which improves 
our understand
ing, which begets 
new questions, 
which in turn 
await a new 
technology, 
which . .. 

many important phenomena within direct reach 
of quantitative scrutiny. 

So that 's where we are. As with much of 
science, progress often awaits the development 
of a new technology, which allows a better view 
of nature, which improves our understanding, 
which begets new questions, which in turn await 
a new technology, which ... So it is with our 
quest for a better description of turbulence. In 
this round, first there was the excitement of frac
tals, because they promised a description of com
plex geometry. Then came the disappointment 
when we realized (hat we couldn't test the idea 
because we couldn't record and analyze adequate 
data to check it . Then the technology arose to 

do so, followed by the disappointment when we 
found that turbulence wasn't a power-law fractal. 
And now there's the excitement of realizing that 
the mathematics of fractals can be extended to 

accommodate the behavior that our experiments 
have revealed. Fractal language gives us the 
proper tools to talk about turbulence, if you're 
not bent on fitting straight lines to things that 
are curved. The new scale-dependent fractal 
dimension contains a lot more information and 
is better able to describe turbulent mixing and 
combustion. But valuable as that is, it isn't 
enough. We need local velocity-field information 
along with the isosurface-geometry data, a need 
that has spurred the development of Image Corre
lation Velocimetry. Soon we'll be able to derive 
the local velocity field from the same set of 
images that will give us the isoscalar geometry
two birds with one stone! 

Every now and then we make a little bit of 
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A fireball that the eye 
perceives as volume
filling in fact consists 
of complicated three
dimensional isosur
faces in constant 
random motion. But 
you've got to look fast 
to freeze them-this 
is a 1/1000th-second 
exposure. 

progress in understanding turbulence, and then 
there's a long wait until the next step. We think 
this research will lead to a big jump in our under
standing, and we're excited. This jump took the 
confluence of a new idea-Mandelbrot's proposal 
to apply the notion of fractals to turbulence- and 
two technologies-the advent of digital imaging, 
which generates large amounts of high-quality 
data directly in computer-manipulable form, and 
an astonishing increase in computing power. All 
three components are advancing today, and we' re 
relying on their continued progress for the next 
jump. Will it be the last' Victory over turbu
lence has been declared on a semiregular basis, 
every time based on different means. And every 
time, turbulence has risen, undefeated, to mock 
us. The ancient Greek gods may well have left 
this piece of the classical world as their legacy to 
remind us of the perils and pitfalls of hubris. D 
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