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The prime number 

theorem was proved in 

1896 by Charles-Jean de la 

Vallee Poussin and Jacques 

Salomon Hadamard. 

working independently of 

each other. Both de la 

Vallee Poussin (top left) 

and Hadamard (top right) 

built on the legacy of 

work by many previous 

mathematicians, including 

(in clockwise order from 

Hadamard) Carl fried rich 

Gauss. Pafnuty Lvovich 

Chebyshev, Georg Friedrich 

Bernhard Riemann, and 

Leonhard Euler. 

This year mathematicians allover the world are 
observing rhe 100th ann iversary of dle fi rst proof 
of rhe prime number theorem, a landmark discov
ery in the hisrory of mathematics. This famous 
theorem cells us what proportion of the positive 
integers are prime numbers. (The positive 
integers are the counting numbers: 1.,2,3,4,5, 
and so on; a prime number is a positive integer 
greater than 1 that is divisible only by itself and 
by 1.) The prime number theorem is pan of a 
branch of mathematics called number theory, 
which deals with properties of all the inregers
positive, negative, and zero. The nrst proof was 
obtained independently in 1896 by two young 
mathematicians-Frenchman Jacques Salomon 
Hadamard, age 31, and Belgian Charles-Jean de 
la Vallee Poussin, age 30. Theirs was a remarkable 
achievement, the culmination of a ceocury of 
efforts by an internatiooal collection of celebrated 
mathematicians. 

The positive integers were undoubtedly 
humanity's first mathematical creation. It is 
hardly possible to imagine human beings withollt 
the abi lity to count, at least within a limited 
range. Numbers were used for record-keeping 
and commercial transactions for centuries before 
anyone thought of speculati ng about the nacure 
and properties of the numbers themselves . This 
curiosity developed inro a SOrt of number-mysti
cism or numerology, and even today numbers such 
as 3, 7, 11, and 13 are considered omens of good 
or bad luck. The emergence of number theory as 
a by-product of numerology is analogous to that 
of another great science, astronomy, wh ich owes 
its origins to a pseudoscience, aserology. 

The first scientific approach to the study of the 
integers, that is, the true origin of number theory 
(s till intermixed with a good deal of number 
mysticism), is generally attributed to the ancient 
Greeks. Around 600 B.C. Pyrhagoras and his 
disciples classified the positive inregers in various 
ways; examples include 

Even I1Imzbers: 
2,4,6,8,10,12, 14,16,18,20, ... 
Odd numbers: 
1,3,5,7,9, I I , 13, IS, 17, 19,. 
Prime numbers: 
2, 3, 5, 7, II, 13, 17, 19, 23, 29, 31, 37,41, 
43,47,53, . .. 
Composite numbers: 
4,6,8,9,10,12, 14, IS, 16, 18,20, . . 

Numbers that aren't prime are composite, 
except that the number 1 is neither prime nor 
composite. The Pythagoreans also linked numbers 
with geometry and with music-the latter by dis
covering the relat ionship between the leng th of a 
plucked str ing and its harmonic properties. (For 
example, a string that is one-half as long as 
anOther str ing under equal tens ion will sound 
an octave higher.) 

The first systematic study of prime numbers 
appeared around 300 B.C., when Euclid wrote his 
Elements, a remarkable collection of 13 books that 
contained much of the mathematics known at that 
time. Books 7, 8, and 9 deal with properties of 
the integers and conta in the early beginnings of 
number theory, a body of knowledge that has 
flourish ed ever since. It has grown into a vast and 
beautiful branch of mathematics that for centuries 
has att racted the attention of both amateur and 
professional mathematic ians. It at (facts amateurs 
because most of its problems are simple to state 
and easy to understand. 1t attracts professionals 
because these same problems are often difficult to 

solve, and reveal relations of great depth and 
elegance. 

Prime numbers derive their importance from a 
theorem, called the fundamental theorem of arith
metic, which was first enunciated by the German 
mathematician Carl Friedrich Gauss. This theo
rem states that every integer n g reater than 1 can 
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Very little is known of the life of Euclid, who flourished 

around 300 B.C. and whose 13~volume Elements distills 

most of the mathematical wisdom of his day. He founded 

a school at Alexandria, in Egypt, and was a personal tutor 

t o King Ptolemy I. When asked by Ptolemy if there was 

no shorter way to learn geometry than reading all 13 

books, Euclid is said to have replied, "There is no royal 

road to geometry." 
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The largest known prime, as of September 3, 

1996 , is 2 l.2~1.787 - 1; it contain s 3 7 8,6 3 2 

digits, which, if printed in (h e L os Angeles 

Tim es , would fill 12 pages . 

be faccored as a producr of prime numbers in one 
and only one way, if one ignores the order of the 
factors. For example, the number 12 has three 
different facrorizarions (I X 12, 2 X 6, and 3 X 4) 
in wh ich at least one factOr is composite, but only 
one factorization (2 X 2 X 3) in which all the fac
tors are primes. The fundamental theorem shows 
that the pri me numbers are the building blocks of 
the mathematical world, JUS t as the fundamental 
particles of physics are the buildi ng blocks of the 
physical world. 

The face that every posi tive integer is a product 
of prime numbers was known in Euclid's time, but 
the uniqlfenesJ of that factO rizat ion was first explic
itly stated by Gauss in L80 L in his DiJqlfiJitiones 
A rithmeticae, one of the earl iest books devoted 
exclusively to number theory. Gauss deduced the 
fundamental theorem from Proposition 30 in Book 
7 of Euclid's Eleme11tJ, which states that if a prime 
divides a product of twO integers, then that prime 
mUSt also divide at least one of the factors. Gauss, 
who is hailed as the greatest pure mathematician 
of all rime, made enormous contributions to other 
branches of matbematics, as well as to astronomy 
and physics, bur he considered the DiJquiJitioneJ 
to be his g reatest work. 

Propos ition 20 in Book 9 of the ElementJ states 
that there are infinite ly many primes. Many 
proofs of th is theorem exist, but Eucl id's orig inal 
proof is the most elegant. It is a proof by contra
diction that goes as follows. Suppose that there 
were only a fi nite number of primes, and let P 
denote thei r product. Look at the number Q = P + 
1. Since Q is greater than 1 it muSt be divisible by 
some prime occurring in the product P, because P 
contains all the primes. However, such a prime 
would also divide their d ifference Q - P, because 
whenever two numbers (say, 35 and 20) have a 
common facror, their difference (in this case 15) 
also has that facror (5, in this example). But in the 
case of Q and P this is impossible, because Q - P is 
equal to 1 and no prime divides 1. 



Leonhard Euler (1703-

1783) lost the use of his 

right eye to overwork 

when only 28. When a 

friend attempted t o 

commiserate, Euler is said 

to have remarked, '" shall 

now have fewer distrac-

tions." A cataract robbed 

him of hi s other eye at age 

5 1, but his work continued 

undiminished with the 

assistance of his sons, an 

excellent memory, and a 

remarkable knack for 

mental comput ation. 

A more sophisticated proof of Euclid's theorem was given many centuries later by the Swiss mathemati
cian Leonhard Euler. In 1737, Euler showed rhat by adding the reciprocals of successive prime numbers 
you can atrain a sum greater than any prescribed number. (This is written symbolically as 

where the 00 represents infinity, and the ... indicates that the sum is to be continued indefinitely.) There
fore, there must be infinitely many primes--otherwise the sum would be finite. Mathematicians describe 
this by saying that the infinite series of reciprocals of the primes diverges. 

A question that presents itself at the very threshold of mathematics is this: How are the p rimes 
distributed among the positive integers? Detailed examination of a table of pri mes reveals great irregu
larities in their distribution. 

Some primes are very close together, like 3 and 5; II and 13; 17 and 19; or 59 and 61-these are 
examples of pairs of twin primes, primes that differ by 2. Twin primes keep recurring as far as we can 
see, as the table below shows. 

x 10' I 10' I 10' I 10' I 10' 10' I 10' I 1010 I lOti 

11lJmbet· of 
35 205 1,224 8,169 58,980 440,312 3,424,506 27,412,679 224,376,048 lIi 'in prime 

pain less 
thaflx 

The largest known pair of twin primes is 242,206,083 X 238.880 plus and minus 1. (T he la rgest known 
prime, as of September 3, 1996, is 2 1

,257,787 - 1; it contains 378,632 d ig its, which, if printed in the Los 
Angeles Times, would fill 12 pages.) It would appear that there are infinitely many pairs of twin primes, 
but to date no one knows whether or not th is is tcue. In 1919, the Norwegian mathematic ian Viggo 
Bruo tried [Q use Euler's method [Q prove that there are infinitely many pairs of twin primes, but instead 
he found that the sum of the reciprocals of all the twin primes is nor divergent bur has a finite sum, now 
called Bmn's constant B: 

Its value to five decimal places is 1.90216, which gives you some idea of the scarci ty of twin pri mes, even 
if there are infinirely many of rhem. 

But there are also large gaps between consecutive primes. For example, there are no primes between 
20,831,323 and 20,831,533. In fact, ir is easy to prove rhat arbitrarily large gaps must eventually exist 
between primes. Choose any integer 11 greater than 1 and look at the set of n - 1 consecutive numbers 
n! + 2, n! + 3, n! + 4, ... , ,,! + n. (The exclamation mark, called a factoria l, indicates that the 11 in n! is to 

be multiplied by all the positive integers less than it- for example, 5! = 5 X 4 X 3 X 2 X I,) All of the 
numbets in this set are composite (1/1 + 2 is divisible by 2, n! + 3 by 3, 11! + 4 by 4, etc.), and since n can 
be as large as you please, this means that there must eventually be arbitrarily long stri ngs of consecutive 
composite numbers, and hence arbitrarily large gaps between consecutive primes. So we see that consecu
tive primes can be very close tOgether, or very far apart. This irregu lar distriburion is one of the difficul
ties inherent in the study of primes. Another difficulty is that no simple formula exists for producing all 
the primes. 

Euclid's theorem on the infinitude of primes can be stated another way. Arrange the primes in increas
ing order and let I)" denote the 11rh prime, so that P

l 
= 2, p] = 3, P3 = 5, P4 = 7, .... We can regard PIt as 

a function of 11. Euclid's theorem states that P becomes as big as YOli wam it to be as n increases without 
bound. Mathematicians describe this by sayi~g thatp" tends to infiniry as n tends to infin ity; ill symbols, 
p ~ 00 as n ~ 00. How fast does p go [Q infinity? Since not all positive integers are primes, p must 
g"row more rapidly than fl. But what" is the actual growth rate of P" for large n? " 

The prime number theorem- the tirle character of this tale-answers this ques tion. The prime 
number theorem states that, for very large n, I'" is about the size of 'I log II, where log n is the natural 
logarithm of fl (the logarithm of n to the base e, someti mes written as log, n, or as In n; e = 2.71828 . . . ). 
This is expressed symbolically as follows: 

p" "" II log II as 1/ - 00. 
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Carl Friedrich Gauss 

(1777-1855) was a child 

prodigy who, he once said, 

"could count before he 

could talk." Gauss reveled 

in computations for their 

own sake. When Guiseppe 

Piazzi of the Palermo 

Observatory discovered the 

first asteroid, Ceres, on 

January I, 180 I, only to 

lose it again 40 days later 

as it appeared to approach 

the sun, Gauss sat himself 

down and computed its 

orbit from three of Piazzi's 

observations. Ceres was 

rediscovered within a 

year's time by several 

astronomers using Gauss's 

calculations. 

The symbol - is read as "is asymptotically equal to," which means that you can make rhe rario IJ C~ n ger 

as close [0 1 as you like by pushing n farthe r and farther our toward infiniry. 
One can also turn the growrh-rare quesrion on irs head and ask, how many primes are there rhat are 

less than or equal to any given positive value of x? This number depends on x and is denoted by 7t(x) . 
If a table of primes is available, rr(x) can be derermined by simply counting the number of primes up 
to x. Bur don't panic if you can't find a rabIe, or if che one you have isn'r big enough- a second, logically 
equivalent version of che prime number theorem states that 7t(x) is asymptotically equal to x divided by 
the natural logarithm of x. In symbols chis is written as follows: 

Jr(X) rv l o~ x as x - ) 00. 

Again, this means chat che racio Jr(x)/IO~X approaches the limit 1 as x goes to infinity. 
People began to speculate about the distribution of primes afrer extended tables of primes appeared 

in the 17th and 18ch centuries. In 1791, the 14-year old Gauss examined a table (compiled by Johann 
Heinrich Lambert in 177 0) that listed all che prime numbers less than 102,000, Gauss counted the 
primes in blocks of 100,1,000, and 10,000 consecutive integers, and made a noce in his diary rhar rhe 
function 1/log n was a good approximarion of rhe average density of disrriburion of primes in the interval 
from 2 to n. He offered no proof, only the numerical evidence he obrained by looking at the cable, In 
1797, when Georg Freiherr von Vega published an extended table of primes up to 400,031, Gauss 
substantiated his hypothesis further, and he kepr returning to this work as new rabIes of primes appeared, 
Many years later, in 1849, he communicated his observations in a leccer to rhe astronomer Johann Franz 
Bncke, and the resulcs were published posrhumously in 1862. (Gauss died in 1855.) Based on rabies 
lisring primes up to 3 million, Gauss observed rhar rr(x) is closely approximated by the integral of the 
density function , J: dn/log n. (This is called the logarithmic integral and is denoted by Li(x).) The cable 
below is adapted from his lerter [Q Encke. I t shows n(x ) and Li(x) for x between \ million and 3 million . 
The agreement between n(x) and Li(x) is striking- rhe error in each approximation is only about one
tenth of one percent. 

x rr(x) Li(x) % error 

500,000 41,556 41,604.4 ° .12 
1,000,000 78,501 78,627.5 0.16 
1,500,000 114,112 114,263.1 0.13 
2,000,000 148,883 149,054.8 0.11 
2,500,000 183,016 183 , 245.0 0.12 
3,000,000 216,745 216,970.6 0.10 

The first textbook devoted enti rely to number rheory was published in 1798 by a Frenchman , Adrien 
Marie Legendre. In the second edition of this text, published in 1808, Legendre also consjdered the 
problem of rhe distribution of primes. An appendix page from Legendre's second edirion displays 
approximations to 7t(x) for various x up to a million. Legendre asserted that n(x) is closely approximated 
by the quot ient 

x 
log .l - 1.08366 . 

On a later page Legendre states chat n(x) is approximately equal to the quotient 

x 
logx - A(x) 

where A(x) is an unspecified function of x chat approaches 1.08366 as x goes to infinity. It seems likely 
char Legendre introduced the number 1.08366 to make his formula approximate 7t(x) more closely. 

Neither Gauss nor Legendre revealed how they arrived at the appearance of the nacurallogarithm in 
rheir formulas. Nor did they make any explicit statement about how good they thought these approxima
rions were outside the tange of the existing prime number tables . It is generally understOod rhat barh 
intended to imply that the ratio of n(x) [Q each approximating formula tends to (he limit 1 as x tends to 

infinity. An elementary calculus exercise shows that Gauss 's logarithmic integral Li(x) is asymptotically 
equal co x/log x, so rhe conjectures of Gauss and Legendre are barh equivalent co rhe stacement now 
known as the prime number theorem: 
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7f(X) -... 10~X as x -)0 00, which means 
7r(X) 
---;. lasx _)o oo 
(10~ x) 

This is one of the most astonishing results in all of mathematics. It describes a simple relation between 
the primes and rhe natUral logaridlm funnion- which, at first glance, has nothing to do with prime 
numbers. 

It's nawral [Q ask what led Gauss and Legendre to use the natUral logari thm in their formulas. T hey 
did nor leave any written clues; they simply recorded their formulas and the supporting data. Let 's see 
how one might be led [Q con jecture the prime number theorem by examining a table of primes. Below 
are some values of n(x). This table lists the number of primes less than success ive even powers of 1 O. 
Gauss had access to tables that only went up to 3,OOO,OOO- the last four columns have been added from 
more modern tables . 

x 10' 10' 10' 10' 

TC(x) 25 1,229 78,498 5,761,455 455,052.5 12 1 37,607,91.2,018 3,))1941,750/l12 

What can we learn by looking at chese numbers? Since we want to find how fast n(x) grows with x, it's 
natural to look at the rat io x /rr.(x) , which compares the two quantities. The next table shows the corre
sponding ratios. 

x 10' I 10' 10' I 10' I 10 10 I on I 1014 

TC(x) 25 1. ,229 78,498 5,761,455 455,052,512 37,607,9 1. 2,018 3,al4911,750/l12 

xl TC(x) 4.000 8.1.37 12.739 17.357 21.975 26.590 31.202 

Nmice rhe differences between successive entries in that row of numbers: 4 .1 37, 4.602, 4.618, 4.6 18, 
4.615, 4.61 2. In each interval where the exponent of 10 increases by 2, we see that the ratio xl rr(x) 
increases by an almost constant amount , 4.6, which is 2.3 times the change in the exponent of 10. But if 
x is expressed as a power of 10, rhen the exponent of x is the logarithm of x [Q the base 10. So the table 
indicates that the change in the ratio x /rr.(x) is approximately equal to 2.3 times rhe change in 10gIO x . 
What about this strange factor 2. 3? A bright 14-year-old such as Gauss would im mediately realize that 
rhe factor 2.3 is very nearly the logarirhm of 10 to the base e (in fact, log, 10 = 2. 3026 ... ), so 

2.3 log " x = (log, 1O)(log lO x) = log, x = log x . 

This suggests that we compare the ratio xln(x) with the natural logarithm of x. Our table now looks like 
this: 

x 10' 10' I 10' 10' 1010 lO ll I 1014 

TC(x) 25 1,229 78,4 98 5,761,455 455,052,51. 2 37,607,912,018 3;D4.9'il,750/l12 

xl TC(x) 4.000 8.137 12.739 17.357 21.975 26.590 31.202 

log x 4.605 9.2 10 13.816 18.421 23.026 27.361 32. 236 

log x/<xI,",x» !.l51 !.l 32 1.085 1.061 1.048 1..039 1..033 

Anyone looking at th is las t row of numbers would surely be tempted CO conjecture rhat they approach 
1 as x approaches infinity. Gauss, Legendre, and many other eminent mathematicians of the early 19th 
century apparently thought so, bur they were unable to prove it. As far as we know, neither Gauss nor 
Legendre made any significant prog ress tOward a proof. 
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Peter Gustav Lejeune Dirichlet (1805-1859) was deeply 

influenced by Gauss, and kept a much-thumbed, well-worn 

copy of the Disquisitiones Arithmeticae at his side at all 

times . Dirichlet was said to be one of the first people to 

actually understand this masterwork , and did much t o 

make it accessible to others. In later years, Dirichlet 

became a friend of Gauss's as well as a disciple, eventually 

succeeding him to the professorship at Gottingen. 

In the 1808 edit ion of his book, Legendre made another conjecture-on prime numbers in arithmetic 
progressions-that plays a tangential role in this story. An arithmetic progression is a sequence of num
bers in which the d ifference between any number and its predecessor is a constant. So if the first term in 
the progression is h and the common difference is k, the progression consists of all numbers of the form 
kn + has n runs through all the nonnegative integers 0, 1,2,3, .. For example, if h = 1 and k = 2, 
the progression consists of all numbers of the form 2n + 1; these are the odd numbers: 1, 3, 5, 7, 9, 1 1, 
13, .... This particular progression contains infinitely many p ri mes- in faer, it contains all of them 
except the prime number 2. The odd numbers, in turn, can be separated into two new prog ressions
those numbers of the fo rm 4n + 1, 

1,5,9, 13,17,2 1, ... ,4n+ 1, 

and those of the form 4n + 3, 

3,7, I I, 15, 19,23, ... ,4n+3, 

Agai n, each of these progressions contains infin itely many primes. 
Primes in the progress ion 4n + 1 had already been investigated by rhe leading mathematician of the 

17th centu ry, the Frenchman Pierre de Fermat. He discovered the surprising result that every prime of 
the form 4n + 1 is the sum of two squares. For example, 5 = 12+ 22

, 13 = 22+ 32
, 17 = 12+ 4 2

, and 29 = 

22+ 52. Although he never invest igated the d istribution of primes, Fermat was the first to discover really 
deep propert ies of the integers and is generally acknowledged to be the fat her of modern number theory. 

But returning to the more general progression kn + h. YOll can see that if hand k have a common prime 
factor p, then each term of the progression is d ivisible by p and there can be no more than one prime 
in that progression. Legendre conjectured that there must be infinitely many primes in the progression 
kn + h if hand k have no common prime factor, but he offered no proof. 

In a celebrated paper published in 1837, the German mathematic ian Peter GUStav Lejeune Dirichlet 
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proved Legendre's conjecture. l nspired by Euler's proof of the infinitude of primes, Dirich let used an 
ingenious argument to show that the sum of the reciprocals of all the primes in the progression kn + h 
diverges, which impl ies that there are infinitely many ptimes in the progression. This result is now 
known as D irichlet's theorem of the infinitude of primes in arithmetic progressions. 

Dirichlet 's proof was an incredible accomplishment. It marked the birth of a new branch of mathemat
ics called analytic number theory, in which problems pertaining only to the integers were attacked by 
going outside the realm of integers. By using concepts that depend on functions of a continuous variable, 
Dirichlet brought the methods of calculus to bear on problems concerning integers, and changed the way 
that everyone approached the prime number theorem thereafter. The ideas introduced in Dirichlet's paper 
laid the groundwork not only fo r analytic number theory, bur also for algebraic number theory, in which 

the methods of abstract algebra are used to study 
the properties of the integers. 

Dirichlet's proof was an incredible accomplishm ent. It marked the But the first real step toward a proof of the 
prime number theorem itself was made in 1848 
by the Russ ian mathematician, Pafnuty Lvovich 
Chebyshev. He proved that if the rat io 

birth of a new branch of mathematics cal l ed analytic number theory, 

in which problems pertaining only to (he integ ers were atracked by n(x)(log x)lx has a limit as x goes to infini ty, then 
this limit must equal 1. However, Chebyshev was 
unable to prove that this rat io actually tends to a 

Pafnuty Lvovich Chebyshev 

(1821-1894) was 

fascinated by mechanical 

toys as a boy. His quest to 

underst and machinery led 

to an interest in geometry 

and ul t imately t o the rest 

of mathematics. He 

returned to mechanical 

problems t ime and again 

throughout his career, 

attempting to construct a 

machine that would draw 

a straight line when a 

crank was turned. 

Although Chebyshev failed 

to solve this problem (a 

student of his eventually 

did), in the attempt he 

invented the polynomials 

that bear his name. 

going outside the real m of integers. 

limit. Then, in l850, he proved that th is ratio lies 
between 0.89 and 1.11 for all sufficiently la rge x. So, although he st ill couldn't make the ra tio converge, 
as it were, he established that the ratio x/Iog x does, indeed, represent the true order of magnitude of Jt(x). 

Chebyshev also introduced twO new funccions that are somewhat easier to deal with than Jt(x), and that 
became the focus of nearly all subsequent work on the prime number theorem. One of these funCtions, 
denoted by ~x), is defined to be the sum of the logarithms of all the primes not exceeding x. The other 

function, denoted by ~x), is the sum ¢(x) = 9(x) + O(x~) + O(x~) + ... + O(x:). where 1ll is the smallest 
posi tive integer fo r which x is less than 2". Chebyshev then showed that proving the prime number 
theorem is equivalent to proving that one of the ratios ~x)/x or vt,x)/x approaches the limit 1 as X goes to 

infinity. W hen the prime number theorem was eventually p roved in 1896, the argument was based 
on Chebyshev's funct ions. 

A German named Georg Friedrich Bernhard R iemann made the next sign ificant seep in 1859, in a 
famous 8-page paper-the only one he wrote on number theory-that was remarkable for its brevity 
and for the wealth of its ideas. He attacked the problem with a new method, inspired by a discovery 
that Euler had made in l732. 

When Euler proved Euclid 's theorem on the infinitude of primes by showing that the sum of the 
reciprocals of all the primes diverges, his argument was based on a fo rmula he discovered that relates 
the prime numbers and the sum of the Jth powers of the reciprocals of all the pos it ive integers 

This infinite series is usually written more briefly as follows, usi ng summation notation: 

(The embellishments above and below the summation symbol L tell us to add up all the terms of the 
form 1hi as n goes from 1 to infinity.) Every beginn ing calculus stlldenr learns about this series while 
studying convergence tests. The series has a finite sum (converges) if the exponent s is greater than 1. 
For example, when s = 2, Euler discovered the striking result that the sum of the series is 1[216 : 

where 1[ is that famous number from geometry, 3.14159 ... , the ratio of the circumference of any circle to 

its diameter. He also showed thar if the squares are replaced by fourth powers the result is rr:t190, and if 
they are replaced by sixth powers the resu lt is nG1945. H owever, if s is less rhan or equal to 1, the series 
has no finite sum-it d iverges. Eu ler discovered that for s greater than 1 this series could also be ex
pressed as an infin ite prod uct exrended over aU the primes. This relation is usually written as follows: 

f:;!,~ n /~ " 
11",1 P 
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Right: The complex-number 

plane maps all numbers of 

the form 0" + ti. The 

integers lie on the 0" axis; 

pure imaginary numbers 

lie on the ti axis. The 

trivial zeros of the 

Riemann zeta function are 

plotted; the non-trivial 

zeros lie somewhere in the 

critical strip, which is 

shown in yellow. 

Georg Friedrich Bernhard 

Rie mann (1826-1866) 

studied under Dirichlet . 

and upon his death 

succeeded him in the 

professorship that had 

once been Gauss·s. He 

died of tuberculosis at age 

39 while in Ita ly, on one of 

several trips he took to 

escape northern Germany's 

cold and damp. He 

borrowed a leaf from 

Pierre de Fermat when he 

wrote that the Riemann 

hypothesis "follow[s] from 

an expression for the 

function ~(s ) which I have 

not yet simplified enough 

to publish." Whether 

Riemann's hypothesis will 

require 357 years of effor t 

to be settled , as Fermat's 

last theorem did, remains 

to be seen. 

Ii 

1 -

-5 - 4 -3 - 2 - I o cr 

- I - -

The infinite product symbol means that we are to multiply factOrs of this type for every prime p. For 
example, taking s = 2, we obtain a remarkable form ula for expressing rr. 216 as an infin ite product involving 
all rhe prime numbers: 

Euler's infini te product with rhe general exponent I is t he analytic equ ivalent of the fundamenta l 
theorem of arithmetic, which , you recall, said that a positive integer can be divided into prime factors in 
one and only one way. The series on the left conrains powers of all the positive integers, but the product 
on the right contains on ly powers of primes. Euler's product ident ity for ms the basis for nearly all 
subsequent work on the distribut ion of primes. 

Riemann suspected rhat Euler's product ident ity might hold rhe key to the proof of the prime number 
rheorem, because the product on the right involves only pri mes. Riemann's main contribution was to 

replace rhe exponenr I, wh ich had hererofore always been a real number greater than I , with a complex 
exponent thar he also called s. Riemann lIsed the no rat ion I = a + ti, where a and t are real numbers, 
and i is the squate rOOt of -1. (Why Riemann mixed a G reek a with a Roman t is unclear-he may 
have intended that it be a 't, bur the printer set it as t, and t it has rema ined. And now, of course, it 
is enshrined in mathematical tradition.) R iemann rhen showed that the d istrib ution of p rime nu mbers 
is connected with properties of the fu nction ~(s), defined by the infinite series 

00 

( s ) ~ L ~. 
1I~ 1 

Because he did so much with the funct ion ~(s) it is now called the Riemann zeta function. 
Riemann showed that the defin ition of the zeta function, originally va lid on ly for cr greater t han 1, 

could be extended (using integral calculus) co all complex values of s, and that the prime number theorem 
is intimately related to the location of the zeros of the zeta function, t hat is, those points in the complex 
plane for which ~(s) = O. These zeros are of twO categories, called trivial and nontrivial. The tri vial zeros 
are the negative even integers, t hat is, the poims s = -2, -4, -6, .. along the negative rea l axis. T he 
exact location of the nontr ivial zeros is not known, excepr that they lie in an infin ite str ip of width 1 
(called the critical strip) in which a lies between 0 and 1. The critical strip is the reg ion in the complex 
j plane that lies between the twO verrical lines where a = 0 and cr = 1, as shown above. 

R iemann laid out an ingenious, high ly creat ive plan for provi ng the pri me nu mber theorem. He 
showed that the prime number theorem would follow logically if one could prove that there were no zeros 
of rhe zeta func tion on the line where a = I. U nfortunately, desp ite hi s best efforts, Riemann could not 
carry out this crucial step in the plan. (H e also conjectured a stronger statement-that all t he nonrrivial 
zeros were located on the cri t ical strip's center line, now called the critical line, where cr = 1/2, T his 
conjecture, called the R iemann hypmhesis. is unproved to this day, and is conside red to be the most 
famous unsolved problem in modern mathematics. If true, it has profound implica t ions concerni ng 
the errot made when n(x) is approximated by xllog x.) 

Riemann , genera ll y considered (Q be the intellectual successor of Gauss, came close (Q proving the 
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" I have discovered a truly remarkable proof, which this margin is too 

small to contain." Unfortunately, this truly remarkable proof-if 

indeed he had one-died wi t h him , as h e never wrote it down on 

Jacques Salomon Hadamard 

(1865- 1963) excelled in 

Latin and Greek as a child, 

but was last or nearly last 

in hi s arithmetic classes 

until the seventh grade, 

when he fell under the 

influence of a good 

mathematics teacher. 

Hadamard was a rel ative of 

Alfred Dreyfus (the army 

officer whose conviction of 

treason on the flimsiest of 

evidence began a 12-year 

controversy, known as the 

Dreyfus Affair, that rocked 

France to its foundations) 

and helped clear his name. 

Char les-Jean de la Vallee 

Poussin (186~1962) 

studied religion and 

engineering successively 

before turning to 

mathematics, A lifelong 

resident of Louvain, 

8elgium, the third edition 

of Volume 2 of his Cours 

d'analyse was lost when 

the German army overran 

the city. 

anything wider. 

prime number theorem, but did not sllcceed, NO[ enough was known during R iemann's lifetime about 
functions of a complex variable ro carry out his ideas successfully. After his death, many mathematicians 
went ro work ro develop the tools needed to execute his plan. As a consequence of th is research, French 
mathematician Jacques Salomon Hadamard developed in 1893 an imponant branch of mathematics- the 
theory of entire functions of fini te order-tO handle cenain classes of previously intractable funCtions thm 
had bested Riemann. (These functions have since taken on a life of their own in mathemat ical analysis .) 
In 1894, Hans Carl Friedrich von Mangoldt used Hadamard's t heory to justify and simplify some of the 
steps in Riemann's method. 

By 1896 the necessary analytic tools were in hand. Working independently and almost simultaneously, 
Hadamard and Belgian Charles-J ean de la Vallee Poussin succeeded in proving the prime number theorem 
by follow ing R iemann's strategy, In fact, de la Vallee Poussin publ ished three papers on the subject that 
year-the first contains his proof of the prime number theorem, the second extends his method to obtain 
a prime number rheorem for ari thmetic progressions, and rhe third is on special types of primes. 

Hadamard and de la Vallee Poussin each used a d ifferent method to prove that the zeta function has no 
zeros on rhe line a = 1, the step upon which Riemann had foundered nearly 40 years earlier. Of the two 
proofs, Hadamard's is rhe simpler. In a two-page note at the end of h is third paper, de la Vallee Poussin 
acknowledged this, and then showed how Hadamard 's method could be simplified even further. In just 
a few lines de la Vallee Poussin showed that the lack of zeros on the line cr = 1 followed quite easily from 
an elementary trigonometric ident ity for the cosine of a double angle: 

cos 20 = 2 cos2 fJ - I. 

He then pointed Out that this trigonometric identity can be used to shorten his original proof in the first 
paper by 24 pages, and that t he same ident ity can be used to simplify the second and th ird papers as well. 

These fi rst proofs were later simplified by many other mathematicians, and new proofs discovered, all 
using sophist icated methods of calculus and complex analysis. Then, in 1949, Atle Selberg, at the 
Institute for Advanced Study in Princeton, and Paul Erdos, an itinerant Hungarian mathematician 
(who died on September 20 of this year, aged 83, while attending a conference in Warsaw), asrounded 
the mathematical world by presenting a proof that makes no use of the Riemann zeta function or com
plex-function theory. But this so-called elementary proof is very intricate, and is more difficult to 
understand than the analytic proofs. 

T he pri me number theorem is important, not only because it makes a fundamental, elegant statemenr 
about primes and has many applicat ions within and beyond mathematics, bur also because much new 
marhematics was created in the attempts to lind a proof. This is typical in number theory. Some prob
lems, very simple to state, are often extremely difficult to solve, and mathematicians working on these 
problems often create new areas of mathematics of independent interest. AnOther such example is 
Fermat's last theorem, which asser[s that the re are no posit ive integers x, y, z, and tl satisfying the equat ion 

x" + y" "" z" if n is grearer than or equal to 3. 

In l637, Pierre de Fermat jOtted that equation in the margin of his copy of D iophanrus's Arithmetictl, 
along with the note, "1 have discovered a truly remarkable proof, which this margi n is roo small to 
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contain." Unfortunately, this tru ly remarkable proof-if indeed he had one
died with him, as he never wrote it down on anything wider. The theorem 
was proved only recently~in 1994!- by Andrew Wiles of Princeton Univer
sity. The proof of Fermat's last theorem has received more publicity than any 
other result in mathematics, but Gauss himself considered Fermat's last 
theorem to be of only minor importance and refused to work on iL 

The prime number theorem and Fermat's last theorem are twO outstanding 
examples of problems that have artracted the intel lectual curiosity of many 
individuals bur resisted efforts at solurion. Repeated failure by eminent 
mathematicians to settle these problems by known procedures stimulates the 
invention of new methods, approaches, and ideas that, in time, become part 
of the mainstream of mathematics, and even change the way mathematicians 
think about their subjecL This is certainly true of the prime number theo
rem. Early attempts to prove it st imulated the development of the theory of 
functions of a complex variable-a branch of mathematics that is the lifeblood 
of mathematical analysis. And efforts to prove Fermat's last theorem led to 

the development of algebraic number theory---one of the most active areas 
of modern mathematical research, with ramifications far beyond the Fermat 
equation. One unexpected application of algebraic number theory is in 
designing security systems for compurers. 

There are hundreds of unsolved problems in number theory alone. New 
problems arise more rapidly than the old ones are solved, and many of the 
old ones have remained unsolved for centuries. Our knowledge of numbers is 
advanced, not only by what we al ready know about them, but also by realizing 
that there is much that we do not know about them. Here are a few of the 
great unsolved problems from the realm of prime numbers: 

- Is there an even number greater than 2 that cannot be written as 
the sum of twO primes? (Goldbach's problem.) 

-Js there an even number greater than 2 that cannot be written as 
the difference of two primes? 

- Are there infi nitely many twin primes? 
- Are there infinitely many primes of the form 2" - 1, 

where p is prime? 
- Are there infinitely many primes of the form 22

" + l? 
- Are there infinitely many primes of the form'? + 1, 

where x is an integer? 
- Is there always a prime between n1 and (n + 1)2 for 

every positive inreger n? 
- Is there always a prime between n2 and 112 + n for 

every integer n greater than I? 
Solve any of the above, and your name, too, shall live forever in the math
ematical hal l of fame! 
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Professor of Mathematics, EtJ1eritltS, Tom M. Aj)ostol 
earned his BS in chemical engineering from the Univer
sity oJ Washington in 1944, and his MS in mathemat
ics in 1946. He moved south to UC Berkeley for his 
PhD, which he got in 1948. The sollthward trend 
continued when he arrived at Caltech as an assistant 
professor in 1950, after a sidetrip to MIT. He became 
an associate professor in 1956, a filII professor ill 1962, 
and emeritus in 1992. His two-volume calculus text
book, written nearly 40 years ago and known to genera
tions of Caltech undergrads aJ ttTommy 1/1 and IITommy 
2, " is stillllSed to teach freshman math. Apostol has 
kept up with the times, going electronic in the 1980s 
as part of the team thtlt created The Mechanical 
Universe ... and Beyond, a 52-episode college-level 
physics telecourse. Apostol is ClIrrently creator, director, 
and prodllcer of Project MATHEMATICS!, a series of 
compltler-animated videotapes explainirJg math concepts. 
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THE END OF 
Facing the 

SCIENCE: 

Limits of Knowled 
BY J OHN H ORGAN, H ELIX B o 

We seem to be coming 
to the end of a lot of things 
lately. First Francis Fukuya
rna proclaimed The End of 
History; then David Lindley 
announced The End of Physics. 
Now John Horgan goes far 
beyond Lindley to include all 
of science. What's going on? 
Is th is justfin-de-siecle 
posturing, inspired by the 
approaching millenium? Or 
is it time for all us scientists 
to starr thinking about our 
next careers? 

T he main body of this book 
is distilled from interviews 
with about 45 prominent 
scient ists. These are orga
nized into chapters, each 
heralding the end of one field 
or another: phi losophy, 
physics, cosmology, evolu-
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