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Gravity glues galaxies together, while deep
within the atom other forces reign supreme.
Do galaxies and protons play by the same rules?
Professor of Theoretical Physics Hirosi Ooguri
and Harvard’s Cumrun Vafa, fresh off a six-month
visit as a Moore Distinguished Scholar, are trying
to find the common ground between the two
realms.  On the atomic scale, the so-called
Standard Model explains three of the universe’s
four basic forces—electromagnetism, and the
strong and weak nuclear forces—in terms of
quantum mechanics.  And string theory is hot
with folks trying to come up with a quantum
treatment of gravity and enfold the Standard
Model into a “Grand Unified Theory of Every-
thing.”  The two theories just don’t mesh, but
Ooguri and Vafa have managed to nudge them
into a closer alignment.  In the process, they’ve
cleared a mathematical minefield in the Standard
Model using techniques they’d developed for
working with strings.

According to the Standard Model, protons
and neutrons contain three quarks each.  So you’d
think that if you hit a proton hard enough you
ought to be able to knock one loose, but try as
we might, we’ve never seen a free quark.  That’s
because quarks are held together by the “strong
interaction,” which increases with distance, so
a proton is essentially wrapped in rubber bands.
The more you stretch them, the harder they snap
back.  This strong nuclear force is carried by
particles called gluons, the swapping of which
makes quarks clingy.

Physicists normally work with such exchanges
by drawing little cartoons called Feynman
diagrams, showing all the possible things the
particles could do.  Say you have two electrons.
Every now and then, one of them might emit a
photon that gets absorbed by the other.  In very
rare cases, the photon could split in midflight,
turning into an electron and a positron, which
then recombine to turn back into a photon.

by Douglas L . Smith

In Feynman diagrams, time moves from left to right.  Every line is a particle, and every

junction is an interaction.  Straight lines are protons, electrons, and the like; wavy lines are

force-carriers like photons and gluons.  The diagram shows the manner in which a set of

particles interact, not their actual directions or speeds.  So in the diagram above left, two

electrons (arrows) exchange a photon, and then a while later exchange another one.  In the

center diagram, an electron and a positron (denoted by a backwards arrow, since it is the

electron’s antiparticle) annihilate one another, producing a photon.  And in the right-hand

diagram, a photon emitted by an electron produces an electron-positron pair that

recombines into a photon before being absorbed by the other electron.  As the processes

get more and more complex, a picture can truly be worth a thousand words.

Like Chocolate for String Theory
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And in extremely rare cases . . . you get the idea.
You can calculate each diagram’s individual effect,
add them all up, and eventually derive an overall
description of the particles’ behavior.  In general,
the more complicated the diagram, the less likely
the process depicted in that diagram is to happen,
so you can cut off the calculation at any level of
complexity and get a corresponding level of
accuracy.  “That’s how things work when we apply
the Standard Model to high-energy collisions, as
shown by Professor of Theoretical Physics David
Politzer and others, or to the various precise
computations in quantum electrodynamics that
Feynman studied so successfully,” says Ooguri.

Each diagram is represented by a single term
in the expansion, or overall calculation, and every
term contains two key parameters.  The first,
called g, is the coupling constant, which is a
measure of the strength of the particles’ interac-
tion.  It’s raised to the power of the number of
vertices, or places where lines meet, in the dia-
gram.  The second, called N, is raised to the power
of the number of closed loops in the diagram.  So,
for example, the odds of the Feynman diagram at
upper left happening are governed by g8N3.

N is always a positive integer, and in the
Standard Model, N equals three because quarks
come in three “colors.”  More generally, N is the
rank of the matrix in the SU(N) gauge-symmetry
group—don’t ask: all you need to know is that the
Standard Model is a gauge theory.  In gauge
theories, forces are carried by particles, such as
gluons and photons; the elusive quantum-gravity
particle is called the graviton.

If you’re dealing with electricity, magnetism,
or the weak nuclear force, the coupling, g, is very
small—for electromagnetism at atomic distances,
it’s about 0.1—and the high-power terms fade
rapidly into oblivion.  “If each vertex costs you g,
then the more complicated the diagram becomes,
the higher the power of g you get, and that sup-
presses the diagram,” Ooguri explains.  “So if g

is small, then you need only worry about the rela-
tively simple Feynman diagrams.”

Unfortunately, the harder you pull quarks apart,
the more gluons they will exchange as they try
to keep their grip.  The reason more gluons get
exchanged is because the coupling constant grows,
and the coupling constant grows because the
gluons interact.  It’s a chicken-and-egg problem.
The method gets stood on its head—the more
complex the Feynman diagram, the more likely
it is to occur.  You get stuff that looks like fine
French lace, and the calculation spins wildly out
of control.  So successive terms get bigger and
the calculation never settles down on an answer.

But Gerardus ’t Hooft, who shared the 1999
Nobel Prize in physics with Martinus Veltman
“for elucidating the quantum structure of
electroweak interactions,” saw a way out.  Since
the calculation depends on N as well as g, and N
is always greater than one, he figured out a way
to expand the equations in terms of 1/N.  You still
have to consider all the Feynman diagrams, but
now the more complicated the diagram, the bet-
ter—as you divide by higher and higher powers
of N, the terms get smaller and smaller.

’t Hooft’s approach allows you to add up
infinitely many Feynman diagrams by classifying
them by their topologies rather than their number
of vertices.  To see what this means, consider the
case of three lines meeting at two vertices, like
the international “do not” symbol.  This diagram

This three-gluon exchange (left) has two vertices and three

complete loops (right).

The harder you pull quarks apart, the more gluons they will exchange as they

try to keep their grip.  The reason more gluons get exchanged is because the

coupling constant grows, and the coupling constant grows because the gluons

interact.  It’s a chicken-and-egg problem.
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represents a “vacuum” exchange of three gluons—
in other words, a triple-gluon swap between two
particles that aren’t there; in quantum mechanics,
empty space is filled with “virtual” particles that
pop into being from nothingness and promptly
disappear again.  The diagram’s two vertices give
you g2, and there are three closed loops for N3.
And if you think of the diagram as being made
of flat strips, so that each loop is an edge, you get
a disk with two holes in it.  So far, so good—but
now if you take the central strip, give it a half-
twist and connect it to the outer edge of the circle
instead of the inner one, the new disk will have
a single, continuous edge.  (Without going into
details, the half-twist can happen because N is
related to the colors of the quarks.)  The two
vertices remain, but now there’s only one loop,
for g2N, as you can prove to yourself by using
the strips of paper at right.  You can’t draw this
up-and-over diagram on a sheet of paper, but you
can on the surface of a donut, as we will discover.
Mathematicians would say that the two disks have
different topologies.

Topology, or rubber-sheet geometry, deals with
the invariant properties of objects—things that
don’t change when the object itself is stretched,
bent, or otherwise distorted; poking holes or
tearing off pieces is not allowed.  Thus a donut is
topologically equivalent to a coffee mug because
each has one loop.  If you stood the donut on edge
and very carefully dimpled it with your thumbs,
you’d create a depression that could hold coffee,
albeit briefly.  Our twisted “do-not” symbol is
equivalent to a somewhat different mug—one

You can make your own one-loop, two-vertex unflat surface.

Cut out the three strips at right.  Lay them out in a T,

green side up, and staple them together.  Staple the arms’

free ends together, forming a ring that’s yellow outside and

green inside.  Insert the T’s leg through the ring from

below, bring it out the top, give it a half-twist, and staple it

to the front of the ring.  If you’ve done this correctly, you’ll

have one all-yellow surface and one all-green surface.  To

show that there’s only one edge, run a marking pen along

it—you can color all the edges and return to the starting

point without lifting the pen.

A donut is topologically equivalent to a coffee mug because each has one loop.

If you stood the donut on edge and very carefully dimpled it with your

thumbs, you’d create a depression that could hold coffee, albeit briefly.
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with a hollow handle that’s open to the mug’s
interior.  In other words, if you filled this cup
with piping-hot coffee, it would go up inside
the handle as well.  This could be a popular design
in Alaska, but there’s a large finger-burning, lap-
scalding lawsuit potential in the Lower 48.  And
the twisted “do-not” donut is equally unsatisfac-
tory—imagine a chocolate-shelled donut from
which a bite has been taken and the donut itself
scraped out, so that only the chocolate remains.
Homer Simpson would not be happy.

His daughter Lisa would be ecstatic, however,
because that’s how you draw a twisted disk on a
donut.  The intact chocolate shell is the donut’s
surface, and the bitten-into shell is the drawing
on that surface of the twisted “do not” symbol.
In fact, any Feynman diagram can be drawn on
a shell made from the right number of donuts.
Picture a whole bunch of them, some perhaps
standing on edge, possibly in a big, jumbled pile,
all touching one other and completely drenched
in quick-hardening chocolate.  After the scraping-
out, you’d get a hollow shell that looks like one of
Henry Moore’s sculptures.  (Particles that enter or
leave the diagram are represented by open-ended
tubes—half-eaten donuts—sticking out from the
shell.)  In ’t Hooft’s formulation, if you start with
n donuts, any diagram drawn on—or bitten out
of—that shell comes with a factor of 1/N-2n.  “The
number of donuts is a topological invariant,” says
Ooguri, “and the power of N keeps track of it.”

Well, then, why not forget about Feynman
diagrams altogether and recast the Standard Model
as a theory of chocolate shells?  Ooguri and Vafa
have shown this is indeed possible—not for the
Standard Model itself, not yet—but for a large
class of supersymmetric gauge theories in four
dimensions.  (Remember, gauge theories describe
forces in terms of particles; supersymmetry is
something required to explain why most particles
have mass.)  Ooguri and Vafa adapted the lan-
guage of string theory to describe the donut

Above:  You can transform

the twisted “do-not”

symbol into a bitten-out

donut shell by gently

stretching and deforming

it.  You start by bringing

the far end of the center

strip around to its near

end, forming a loop that

encircles the donut like a

cigar band.  Then stretch

the horizontal and vertical

loops until they cover

most of the surface,

leaving one small hole.
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shells, and it works very well.
String theory had been rescued from obscurity

in 1974, when John Schwarz, now the Brown
Professor of Theoretical Physics, and his collabora-
tor, the late Joel Scherk of the Ecole Normale
Supérieure in Paris, realized that it could be a
candidate for the long-sought Theory of Every-
thing.  (It had originally been invented for an
altogether different purpose that didn’t work out,
but that’s another story.)  But while it handled
quantum gravity quite nicely, it predicted a
universe that didn’t match ours in one important
respect.  Explains Ooguri, “Nature is not symmet-
ric under the exchange of left and right.  The
world in the mirror is not the same as our world.”
This effect, known as parity violation, could not
be reproduced—the string-theory universe
remained stubbornly ambidextrous.  Undaunted,
Schwarz kept plugging away almost single-
handedly until 1984, when he and Michael
Green (then at the University of London, now
at the University of Cambridge) found the fix
that kept the theory internally consistent while
allowing parity to be violated.  The field took off,
and nowadays you can’t pick up a popular-science
magazine without reading about superstrings,
10- or 11-dimensional universes, M theory,
branes, and the like.

Strings can be thought of as flexible Os.  As
time passes, a string sweeps out a “world sheet,”
as shown at left.  If the string is moving, the
sheet—a cylinder, really—leans in the direction
of motion.  If the string emits another string,
the cylinder forks.  As more strings interact, their
collective world sheet becomes a network of fused
donut shells.

But it’s not enough for the world sheet to look
like a shell.  It has to taste like chocolate, or in
this case it has to reproduce the adding-up of the
Feynman diagrams.  Ooguri and Vafa have shown
that one particular variant of string theory does
just that.  Says Ooguri, “When we did the com-
putations, the world sheet started generating some
exotic domains because of its internal dynamics.
It tore open here and there to create a new phase
in which space-time decayed into nothing.”  Such
behavior tends to be the death of theories, as the
math generally breaks down, but Ooguri and Vafa
were thunderstruck to discover that the strings
stayed in the sheet’s normal regions, flowing
around the exotic domains like water around rocks
in midstream.  That is, the strings developed gaps
as needed to avoid entering these uncharted zones,
and then magically closed up again when the
danger had passed.  “It turns out that this corre-
sponds exactly to a Feynman-diagram computa-
tion.  The exotic domains create holes in the world
sheet, and if you throw them out, you recover the
computation from gauge theory.  This provides a
way to generate open strings out of closed strings,
and once you have open strings, you almost have a
gauge theory.”

Why not forget about Feynman diagrams altogether and recast the Standard

Model as a theory of chocolate shells?

Top left:  As in a Feynman

diagram, time moves from

left to right.  Here a string

(red) emits another string,

causing the world sheet

(gray) to fork.

Left:  If a string comes into

existence briefly and then

vanishes, its world sheet is

a sphere.  Ooguri’s and

Vafa’s exotic domains tear

the sphere’s surface open,

and by stretching three

openings in just the right

way, you can get the flat

disk with two holes.  The

bottom two spheres have

been rotated to show how

one hole engulfs nearly an

entire hemisphere before

the flattening.
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The work also has mathematical applications,
particularly in three-dimensional knot theory.
A knot can be thought of as a length of rope with
its two ends attached to each other.  The simplest
knot is a circle or ellipse, the so-called unknot; in
nontrivial knots the line is wrapped around itself.
So in the next-simplest knot, you cross the line
over and under itself
once, as if you were
preparing to tie your
shoelaces, before you
join the ends.  This is
called a trefoil knot.
And truly complicated
knots have loops
stuffed through other
loops and lines twisted
around themselves like
the Gawd-awful tangle that that 150-foot, bright-
orange outdoor extension cord in your garage is in.

One of knot theory’s fundamental problems is
to determine whether one knot is equivalent to
another—whether the one can be transformed into
the other without forcing the line to pass through
itself like a magician’s linking rings.  Mathemati-
cians eventually hope to be able to classify all
knots in this manner.  A related question is that
of deciding whether a given knot is trivial, that
is, if it can be disentangled into a circle.  Say you
have a flat loop of rope—a very long, thin oval.
If you treat the tips of the oval like the ends of an
ordinary piece of cordage, you can tie the doubled-
up rope into additional knots.  The result sure
doesn’t look trivial, but it is—you can get back
to the original oval without cutting and splicing
anything.

In their quest to classify knots, mathematicians
have come up with several invariants, or math-
ematical expressions that remain unchanged as
you pry the knot’s loops apart.  If the invariants
for two knots are different, then, clearly, so are
the knots.  But nobody has yet come up with a

The Number of  the Knot

Ooguri and Vafa were working in four dimen-
sions; the current universe-explaining superstring
theory operates in 10.  (The other six are curled
up on themselves, so we don’t experience them.)
Ahead lies the job of twiddling with those other
six dimensions until the Standard Model comes
tumbling out.  The clincher will come when the
calculations predict the masses of the proton,
neutron, and so on that are actually observed,
and to the same level of precision.

“There’s already a string theory that approxi-
mates the strong interaction pretty well, but it’s
not exact,” says Ooguri.  In this regard, the string
theorists are in the same boat as everybody else.
Because the Feynman diagrams are so intractable,
the other folks have resorted to something called
lattice gauge theory, in which space-time is
divided into a finite set of points, called a lattice.
Then a computer calculates all the fields at each
lattice point.  Says Ooguri, “The technique has
gotten to the point where we can compute particle
masses fairly well.  But it is not very illuminating.

“We want to do much better.  By transforming
the calculations into string-theory problems, the
techniques Vafa and I, and other collaborators,
have worked out over the last 10 years give us
a way to compute various quantities exactly for
a large class of gauge theories.  These are calcula-
tions we couldn’t even approach before, and that’s
very exciting.”

To date, nobody has found a general analytical
method capable of handling the strong interaction.
In fact, it’s such a tough nut to crack that the Clay
Mathematics Institute has named it one of seven
“Millennium Problems,” and has offered a million
bucks to the person or persons who succeed.  And
while the money would be nice, “if we get a han-
dle on this,” Ooguri says, “we’ll surely learn tons
of new things about gauge theory.  That’s our aim.” ■

Above:  If you make a

world sheet from enough

donuts, you can reproduce

any Feynman diagram, no

matter how complicated.

The Feynman diagram at

left has 30 vertices and a

tangle of gluons.  The red

lines are half-twisted paths

that rise up out of the

page, while the green lines

are half-twisted ones that

hang under the page.  This

diagram can be drawn on

the five-donut surface at

right.  (The forked bridge,

when squashed flat,

becomes three donuts.)
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An unknot (red) extended

into two dimensions

creates a cylindrical

surface.  The unknot’s

minimum, or soap-bubble,

surface in the three-

dimensional space

containing the cylinder is

the slanted ellipse shown

in pink.

along with string theory.  Says Ooguri, “We then
looked for minimum surfaces—surfaces of mini-
mum area, like a soap film on a wire loop—that
are bounded by the 3-D knot.”  That’s pretty mind-

bending, but it’s easier
to follow in fewer
dimensions.  For
example, take a cylin-
der and slice it on the
bias to make an oval.
This oval is an unknot.
If you extend the
unknot into two
dimensions, you get
the cylindrical surface.

And the unknot’s minimum surface in three-
dimensional space is the diagonal disk that lies
within the cylinder and whose edge is the oval.
Moving up the food chain, a trefoil knot can have
a fluted minimum surface with a donutlike hole
in the center.

“The surfaces come with various topologies,”
says Ooguri, “so we count up the number of
surfaces in each topological class.  There are
infinitely many topological classes—basically
the number of donuts again—so we have infinitely
many integers.”  (Of course, a lot of those integers
can be zero.)  “And the way you count them has
close ties to other branches of mathematics, so
I hope that insights from those branches will give
fresh perspectives to problems in three-dimen-
sional topology.” ■ —DS

“Mathematicians like integers.  They think

integers are more noble than real numbers.  So

when we found integers in an unexpected place, it

got their attention.”

formulation for a “complete” invariant—a formu-
lation that says that two knots must be the same
if their invariants are the same.

One nearly complete class of knot invariants
is called the Jones polynomials, discovered by
UC Berkeley’s Vaughn Jones.  This work won him
the Fields Medal, often called the Nobel Prize of
mathematics, in 1990.  Says Ooguri, “Jones’s work
initiated a proliferation of knot invariants in the
1980s.  Unfortunately, these invariants have not
provided much insight into knot theory itself.  In
particular, the relationships between these invari-
ants and the intrinsic geometric properties of the
knots remain obscure.”

But, he adds, “while
we were trying to fig-
ure out the equivalence
between gauge theory
and string theory, and
the physical conse-
quences of that equiva-
lence, we came up
with a surprising pre-
diction: for every knot,
you can extract an infinite set of integers from the
Jones invariant and its generalizations, and these
integers have clear geometric meaning.  Mathema-
ticians like integers.  They think integers are more
noble than real numbers.  So when we found
integers in an unexpected place, it got their
attention.”  In fact, some aspects of Ooguri
and Vafa’s conjecture have already been proven
mathematically.

The conjecture arose by analogy to ’t Hooft’s
method for adding up Feynman diagrams drawn
on chocolate surfaces.  A knot is a one-dimensional
object, but it’s embedded in three-dimensional
space.  So Ooguri and Vafa added two dimensions
to the knot to make it 3-D, and then placed this
3-D knot in six-dimensional space—six-dimen-
sional because they were trying to work out what
happens in those six extra dimensions that come

Surface tension drives

soap films to span the

minimum possible

area, so here’s the

minimum surface

of a trefoil knot,

wire-loop and

soap-film style.  The

saddle-shaped surface

curves gracefully to

connect adjoining turns of

the wire, leaving a void in

the middle analogous to a

donut hole on a closed

surface.
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