


by Robert J. Lang

In this origami composi-
tion, “Hummingbird and
Trumpet Vine,” Lang folded
the bird, each blossom, and
each leaflet from a single,

uncut square of paper.

Origami:

Complexity in Creases (Again)

Over a decade ago, I wrote an article for Engi-
neering & Science magazine about origami, the
Japanese art of paper folding, and its appeal to
scientists and mathematicians. Toward the end
of the article, in a fit of wild speculation, I asked:

“Could a computer someday design a model
deemed superior to that designed by man?”

Little did this would-be futurist know what the
following decade would bring. The past 10 years
have seen an astonishing cross-fertilization of ideas
between origami, math, and computer science. We
have origami solutions to ancient problems, such
as how to double a cube or trisect an angle, and
origami solutions to new ones, including how to
fold airbags to fit into steering columns, or tele-
scope mirrors to fit into spacecraft. And certain
origami crease patterns have been found to encode
some of the hardest problems known to computer
science. But most remarkably, yes, there is indeed
a computer program that can, in 30 seconds or so,
design origami models more complex than any-
thing conceived over the previous thousand years.
When I wrote that E&S article in 1989, the field
of origami mathematics was almost nonexistent,
but over the past 10 years, researchers from many
fields have developed the principles that led to
that program and to the application of origami
to real-world engineering problems.

Paper folding did not start out as an engineering
discipline; it started as a craft. Origami is the art
of folding uncut sheets of paper, usually squares,
into decorative shapes. The name is Japanese
and the Japanese form of the art is the most well
known, although other countries (notably Spain)
have their own independent tradition of paper
folding as entertainment. There are two kinds
of origami in Japan: abstract, ceremonial shapes,
such as the good-luck pattern known as noshi, and
representational origami—origami that looks like
something. Historically, the usual subjects for
representational origami were birds, fish, flowers,
and the like. It was a woman’s art: simple figures
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passed down from mother to daughter, valuable
primarily for teaching or entertaining the young.
The ceremonial figures were imbued with great
symbolism, but for the most part, representational
origami was viewed with the same respect that we
give cootie catchers and paper airplanes—which

is to say, not very much.

That began to change in the early part of the
twentieth century, when a Japanese factory worker
named Akira Yoshizawa began creating artistic
new designs. He also promoted origami in books
and exhibitions, initially in Japan, and eventually
around the world. Origami as an art form caught
on in the West in the 1950s and 1960s. Some
people seem to have a peculiar susceptibility to
the charms of origami—the simplicity of folding
a pedestrian sheet of paper into unexpected and
beautiful shapes. Through the 1960s and 1970s,
the number of people infected by this particular
bug grew at an exponential rate.

Somewhere along the way, the ranks of the
infected were joined by mathematicians and
scientists, who began asking questions like: What
is possible in origami? How can I fold any given
object? Can one quantify the difficulty of an
origami design? Of course, scientists don’t just
ask questions—they set out to answer them.

One of the first areas to be explored was the
problem of geometric constructions. You probably
recall from high-school geometry that you can
draw an equilateral triangle or bisect a given angle
using nothing but a compass and a straightedge.
But some constructions, the most famous being
the trisection of an angle, are impossible with just
those tools. It comes as a surprise to many people
that it is possible to trisect any angle using
origami—it came as a surprise to the editors of
the American Mathematical Monthly, which printed
an article in 1996 “proving” the impossibility of
origami angle trisection, and then printed a
correction six months later noting that an origami
solution for angle trisection was over 20 years old.
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1. Draw the desired
angle, PBC, so that
Tsune Abe’s trisection point B is in the corner
method works for any

angle less than 90°. There

2. Make a horizontal
fold anywhere across
the square, defining

C B Cc
3. Fold line BC up to
line EF and unfold,
creating line GH.

@
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4. Fold the bottom
left corner up so that
point E touches line

are other methods that

work for larger angles.

of a square of paper line EF. BP and point B

as shown. touches line GH.
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5. With the corner
still up, fold both
layers to continue
the crease that ends
at point G all the way
to J, then unfold.

There are always a few adventurous high-
schoolers who, when told of the impossibility
of angle trisection, seek to find a method on their
own. However, it’s been mathematically proven
that a compass and unmarked straightedge don’t
allow angle trisection—at least, not without
cheating. The way this was proven was to show
that all the different operations you could make
with compass and straightedge—striking arcs,
drawing straight lines through points, and so on—
were only enough to solve quadratic equations,
while trisecting an arbitrary angle requires the
solution of a cubic equation. One of the compass-
and-straightedge cheats involves holding your
compass against the ruler and manipulating the
two as a single object, thus effectively letting you
do things with a marked straightedge. This simple
change adds another new operation to compass-
and-straightedge that allows the solution of cubic
equations, and thus, angle trisections. In the
origami angle trisection, the action in step four—

It came as a surprise to the editors of the American Mathematical Monthly, which

printed an article in 1996 “proving” the impossibility of origami angle

trisection, and then printed a correction six months later noting that an

origami solution for angle trisection was over 20 years old.
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folding two different points to lie on two different
lines—fills the role of the marked straightedge.
This maneuver, or one like it, is at the heart of
several origami solutions to problems that bested
Euclid. One of the most elegant is “doubling the
cube,” that is, constructing two line segments in
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6. Unfold corner B.

8. The two creases
BJ and BK divide the
original angle PBC
into thirds.

7. Fold along the
crease that runs to
point J, extending it
to point B. Fold the
bottom edge BC up
to line BJ and unfold.

the ratio of 1: 3/2. An approach devised by Peter
Messer is shown on page 12.

Origami geometric constructions are part of a
family of pure mathematical problems in which
the object is to fold an arbitrary geometric shape
or a pure number represented as a distance pro-
portional to the edge of the paper. While the
origami construction of a 13-gon has a certain
allure, for many folders (myself included), ori-
gami’s appeal has always been that you folded a
specific subject: a bird, fish, or cuckoo clock. My
own interest has been more practical: given the
subject, how can I use mathematics to figure out
how to fold it? This has been dubbed mathemati-
cal origami design.

This field owes a great debt to computational
geometry, itself only about 30 years old. One of
the first formal results was proven in 1994, when
Marshall Bern and Barry Hayes, computer scien-
tists at Xerox PARC in Palo Alto, California,
showed that the problem of origami crease assign-
ment—given a pattern of creases on a square, how
to decide whether each crease should be a moun-
tain fold (making a peak) or valley fold (making
a trough)—could be computationally intractable
for relatively small problems.

In lay terms, Bern and Hayes proved that “ori-
gami is hard”—a point most people don’t need
to be convinced of. But in fact, they proved its
difficulty in a significant way. They showed that
crease assignment was one of a broad class of
problems known as “NP-complete” that contains
some of the most challenging problems known
to computer science (see sidebar). These problems
share two characteristics: if you find a quick way
to solve one of them, you can use the same
approach to quickly solve all the others; and no
one has ever found a quick way to solve any of



NP-Completeness and Origami

NP-complete problems are defined by their
computational complexity, which measures how
the work involved in solving a problem relates to
the size of the problem itself. For example, when
you add two #-digit numbers, you start at the
right and add each pair of digits (plus any carries),
record the result, and go on to the next pair. You
do this 7 times and thus the problem’s complexity
is said to be of order 7, abbreviated as O(z).

For simple addition, complexity increases
linearly, but often it grows much faster. For
example, you “convolve” two lists of numbers
by multiplying every number in one list by every
number in the other list and then adding them up
in groups. (Convolution is what Adobe Photoshop
does when it blurs or sharpens an image.) For two
lists of » numbers, there are »* multiplications and
n* additions, so the problem is said to be O(#?).
Now, if you double the problem’s size, you quad-
ruple the program’s running time.

Sometimes there are faster approaches. While
multiply-and-add is O(»*), the Fast Fourier Trans-
form allows you to do a convolution in O(z log ),
meaning that the number of steps is proportional
to the product of 7 and its natural logarithm. Of
course, 7 Jog n still grows, but much more slowly
than #°. A fast algorithm can make the difference
between minutes and days of computing.

Addition and convolution are called class P
problems, where P stands for “polynomial time,”
because the time needed to solve them is bounded
by some finite polynomial in 7 (meaning » raised
to a finite power; thus, # /og 7 is bounded by 7°).

But a host of nasty problems appear to scale as
an exponential of their size and quickly become
intractable as 7 increases. Running an exponen-
tial-time algorithm might easily take longer than
the age of the universe even for fairly small values
of n.

One famous example is the traveling salesman
problem: given the locations of # cities, what is
the shortest route that visits each city? A related
form of the problem asks if there is a route shorter
than a specified distance. Although people have
figured out relatively fast ways of finding pretty
good answers—routes that are among the short-
est—the only known way to guarantee you've
really found the shortest one is to compare all
possible routes, or at least a fairly large subset
of them. The traveling salesman is in a class
of problems, called NP for “nondeterministic
polynomial time,” which may or may not be
solvable in polynomial time, but whose solutions,
once found, can be checked in polynomial time. For
example, it’s easy to see whether a route is under
100 miles long.

The traveling salesman problem and several
others are in a special corner of NP, called NP-

complete, which means that they are hard in

a particular way. As in the case of convolution,
problems can sometimes be converted, or “re-
duced,” to other problems. NP-complete prob-
lems have the property that every problem in NP
can be converted into any NP-complete problem,
which means that if you could knock off one of
these incorrigibles in polynomial time, you could
use the same approach to solve all NP problems
and make millions of dollars along the way. The
frustrating thing is that although almost everyone
believes that there are no polynomial-time algo-
rithms for NP-complete problems, no one has
been able to prove it.

Which brings us to an origami problem: given
a pattern of creases, how can you assign valley and
mountain folds to the creases so that the result can
be folded flat? It’s pretty easy to analyze a single
vertex where creases intersect. For example, if four
creases come together, they will only fold flat if
there are three mountain folds and one valley fold
or vice versa, and the sums of opposite angles are
equal. (To see this, fold a square in half and then
in half again to make a new square one-fourth the
original size.)

The complexity arises when edges and layers
start to collide in a large pattern. You can’t pass
the paper through itself, and a crease that runs all
the way across the paper can make widely sepa-
rated regions interfere with one another. Such
long-range interconnectedness is a hallmark of
the traveling salesman problem and its ilk.

Bern and Hayes showed that assigning moun-
tain and valley folds is equivalent to the so-called
“not-all-equal three-variable satisfiability” prob-
lem, which is known to be NP-complete: given a
collection of clauses, each containing exactly three
true-false logic variables, determine whether you
can make each clause have either one or two, but
not zero or three, “trues.” A simple example is
shown in the margin. Bern and Hayes converted
the clauses into small crease patterns connected
by long, skinny pleats. A noninterfering set of
mountains and valleys corresponded to a valid set
of trues and falses. So a pleat that went mountain-
valley might mean “Pat is the husband, Kim is the
wife,” whereas valley-mountain would mean “Pat
is the wife, Kim is the husband.” Thankfully,
only one particular class of crease-assignment
problems is NP-complete, or this article would
not have been written.

As noted earlier, if you could solve one NP-
complete problem efficiently, you've solved them
all, but proving that a problem is NP-complete
does not prove that no efficient algorithm for
solving it exists. It just means that while I can’t
find one, neither can all the famous folk.
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This brainteaser uses
genders instead of “true”
and “false.” Four couples

attend a party: Pat and
Kim, Renay and Leslie, Lynn
and Lee, and Sydney and
Chris. Each couple consists
of a husband and wife,
though not necessarily in
that order. Each of the
following trios includes
two members of one sex
and one of the other:

I. Leslie, Lynn, and Sydney;
2. Pat, Leslie, and Chris;

3. Kim, Renay, and Lynn;

4. Kim, Leslie, and Lee.

If all the husbands get
together in one room and
all the wives in another,
who is in the room with
Renay? For the answer, see

page 44.
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Peter Messer’s construction

of the cube root of 2.

1. Make a small fold
halfway up the right
side of the paper.

2. Make a crease
connecting points A
and C and another
connecting B and E.
Only make them
sharp where they
cross each other.

3. Fold the top edge
down horizontally

to touch the crease
intersection and
unfold. Then fold the
bottom edge up to

touch this new crease

and unfold.

4. Fold corner C to
lie on line AB while
point | lies on line
FG.
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5. Point C divides edge
AB into two segments
whose proportions are 1
and the cube root of 2.

them. Absent that magic bullet, cracking such
problems basically boils down to trying out an
appreciable fraction of all the possible solutions
and seeing which one works. Bern and Hayes
showed that some origami crease patterns can
be used to encode NP-complete logic problems;
solving the crease pattern would be equivalent
to solving the logic problem.

The difficulty of assigning mountain and valley
folds to an existing crease pattern grows quickly

Creating a rigorous definition of a “flap” was fundamental to our solution.

A not-so-rigorous definition is “a loose bit of paper that gets turned into
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an appendage.”

with the number of creases; therefore it is possible
to construct patterns for which mountain-fold and
valley-fold assignments would stump even the
most powerful computer. Small problems are
amenable to trial and error—just try every possi-
ble combination of mountain and valley folds—
but this quickly becomes impractical as the size
of the pattern grows.

Not all crease problems are intractable; in fact,
some of them are at just the right level of diffi-
culty to make good puzzles. On the opposite page
is a crease pattern designed by Hayes, who called
it “Get Off the Moon!” In honor of JPL’s current
successes on the red planet, I've created a modified
version titled “Get Off of Mars!” Cut out the
black square and fold it, making creases only on
the dotted lines, to conceal all six rovers—three
on each side of the paper.

Bern and Hayes’s proof would seem to rule
out developing a computer algorithm for origami
design; after all, how can you hope to design an
unknown crease pattern if you can’t even assign
mountain-valley status to a known crease pattern?
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Fortunately, their result only applies to patterns
that may encode NP-complete logic problems.

If you can lay out the creases to avoid such logical
challenges, then the problem might be quite
tractable.

During the 1990s, Japanese biochemist
Toshiyuki Meguro and I independently developed
a set of techniques for expressing the structure of
a large class of folded shapes in a way that could be
transformed into creases on a sheet. Just as impor-
tantly, the mountain-valley status of most of the
creases was predetermined by the shape itself, and
the remaining creases could easily be assigned
using simple, polynomial-time rules.

Creating a rigorous definition of a “flap” was
fundamental to our solution. A not-so-rigorous
definition is “a loose bit of paper that gets turned
into an appendage.” Flaps become wings, legs,
arms, feet, ears, horns—basically, anything that
sticks out from the rest of the model. In origami,
a shape with a bunch of flaps is called a “base.”

In general, a base resembles the subject to be
folded by having the same number and length of
flaps as the subject has appendages. For example,
a base for a bird might have four flaps, correspond-
ing to a head, tail, and two wings. A slightly
more complicated subject such as a lizard would
require a base with six flaps for the head, four legs,
and a tail. And an extremely complicated subject
such as a flying horned beetle might have six legs,
four wings, three horns, two antennae, and an
abdomen, requiring a base with 16 flaps.

The number of flaps required depends on the
level of anatomical accuracy desired by the paper
folder. Historically, much origami design was
petformed by trial and error—manipulating a
piece of paper until it began to resemble some-
thing recognizable. For a complex subject, this is
rather inefficient, since one is unlikely to stumble
upon a 16-pointed base with flaps of the right size
in the right places purely by luck. A more direct-
ed approach was clearly needed.



I focused my attention on a class of bases that
can be oriented so that all of the layers run up and
down and all of the flaps have their tips and at

least one edge in a horizontal plane. If you take
Left: The traditional Bird  ecither base shown at left and rotate it 90 degrees :
around the red axis, you'll see what I mean. This I
class, which I named the “uniaxial” base, takes in |

all of the traditional origami bases, including the
" Right: John Montroll’s Kite, Fish, Bird, and Frog {see E&S, Winter 19891

famous Dog Base is not,  and many (though not all) modern bases as well.
If you illuminate a uniaxial base from directly o

above, its shadow will consist solely of lines, as Montroll's Dog Base

Base and Frog Base are

I uniaxial bases.

. having two distinct axes.
Bird Base Frog Base

you can see on the next page. It turns out that

the most important properties of a uniaxial base—
indeed, much of its structure—can be determined
solely from the properties of its shadow. In mathe-
matical terms, this shadow forms a “tree graph,”
which is a fancy term for a “stick figure.” The tree
graph consists of “edges,” or line segments, and
“nodes,” which are points where edges either come
together or terminate. The flaps have a one-to-one
correspondence with the graph’s edges; similarly,

2004 ENGINEERING & SCIENCE No. | 13



A folded uniaxial base

(right) casts a tree-graph
shadow. We can take
many paths between leaf
vertices P and Q, the

shortest of which (path A)

is the same length as the
shadow. When the paper
is unfolded (far right), this

path becomes the crease

connecting P and Q.
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Origami subjects with
relatively large, rounded
bodies are not so well
suited to tree theory. This
figure, “Night Hunter,” uses
a mixture of tree theory

and intuition in its design.

the flaps’ tips match up with the “leaf nodes,”
which are the nodes that have exactly one edge
connected to them. While graph theory generally
doesn’t care about the lengths of the graph’s line
segments, we do; we assign the length to each
edge that we desire in the corresponding flap of
the base. With this, we are ready to start figuring
out the creases.

Let’s consider the hypothetical base at left, and
the relationship between paths on the unfolded
paper, the same paths in the folded base, and the
shadow. Suppose you drew a line, not necessarily
straight, on the paper. What would that line look
like in the folded base, and how long would its
shadow be?

A point on the paper whose shadow is a leaf
node is called a “leaf vertex.” Each vertex corre-
sponds to the tip of a flap, so that any path
between two leaf vertices will, in the folded base,
run from the tip of one flap to the tip of another—
say between points P and Q. This path might
travel in a horizontal plane in the base, as path A
does, or it might go uphill and downhill within
the folds of paper, like path B. How does the
length of the path compare to the length of its
shadow? If the path is purely horizontal, like path
A, then the two lengths are equal. Any other
path, including path B, is longer than its shadow.
Thus the distance between any two leaf vertices on
the unfolded crease pattern must be greater than
or equal to the distances between the correspond-
ing leaf nodes on the tree graph. I named this
mathematical expression the “path condition” for
the two vertices, and there is a path condition for
every possible pair of leaf nodes.

This seems pretty obvious, but in the early
1990s I was able to show something not so
obvious: that the inequalities embodied in the
path conditions were not only necessary for a valid
crease pattern, but they were sufficient, as well—

a much more useful result. In other words, if you
found a set of points on a piece of paper that
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satisfied all possible path conditions, then those
points were the leaf vertices of a pattern that
would fold into a base whose shadow was the
graph. Furthermore, whenever the length of a
path between two vertices exactly equaled the
distance between the corresponding nodes, a fold
line ran between those vertices, and that fold was
almost always a valley. For example, path A is
petfectly horizontal and runs along the bottom of
the base. Any path that descends to this line, like
path B, has to change direction in the folded base
or leave the paper; consequently, there must be a
crease there. Constructing all such valley folds
produces the creases that serve as a framework for
the base.

F / F Top: The tree graph for a
six-flap base.

\B
/C\ Bottom: The skeleton of
G H the crease pattern that
D

will fold into the
corresponding base. Now

all we have to do is

construct the secondary
folds that will, for example,
bring together all the
points labeled B.

SCIENCE NoO. | 15

ENGINEERING &



Top left: The crease pattern for the triangle molecule. Top right: The molecule is formed by
folding along the angle bisectors and bringing the three points marked D together as you
flip the paper over. (Dashed lines are valley folds, dot-dashed lines are mountain folds.)
Bottom left: The folded molecule. If you now folded tips B and C forward to meet tip A, all
of the original triangle’s edges would now lie on a common line. Bottom right: The

molecule’s tree graph.

Below: The two four-node
graphs, and some
molecules that fold into
them. Heavy black lines
are valley folds, heavy
green lines are mountain
folds, and the light black

lines are “hinge creases,”

which may be mountains,

four-star

valleys, or unfolded,
depending on the flap’s

role in the model.

These first folds aren’t the entire crease pattern,
of course, but they establish its overall structure
by dividing the paper into polygons that corre-
spond to various pieces of the tree graph. Now we
need to fill in these polygons with creases in such
a way that each polygon folds flat with all its
edges along a common line. Several crease pat-
terns that do this—dubbed bun-shi (molecules) by
biochemist Meguro—were found for triangles and
some special quadrilaterals by Koji Husimi, Jun
Maekawa, Fumiaki Kawahata, Toshikazu Kawa-
saki, and me during the 1980s and early 1990s.
The creases that fill in a triangle are very simple
to construct; they bisect the three corners.

There’s a close relationship between a polygon
and its tree graph: the sides of the polygon, when
folded, become the edges of the graph. Fora
triangle, it’s a one-to-one relationship; there is
exactly one triangle for a given three-leaf-node tree
graph and vice versa. Quadrilaterals are a bit more
complicated, first, because there are two possible
tree graphs with four leaf nodes, and second,
because there can be many different quadrilaterals
for the same tree graph. The two tree graphs are
called the “four-star” and the “sawhorse,” and are
illustrated below, along with two molecules for
each. As the number of sides goes up, the number
of graphs and molecules grows rapidly.

One type of molecule, called the gusset, is
particularly versatile; one version of it can be
folded into a four-star, and another into a saw-
horse. In 1995, I discovered a generalization of
it that worked for any convex polygon, no matter
how many sides it had. I dubbed the algorithm
that creates these solutions the “universal” mole-
cule. Any tree graph can be decomposed into one
or more polygons, each of which can be folded into
a universal molecule, giving a full crease pattern
for any uniaxial base.

sawhorse

R

waterbomb molecule gusset molecel sawhorse molecule gusset molecule
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A one-cut puzzle. Cut out
this rectangle and fold it
only on the solid lines:
mountain folds are green
and valley folds are black.
Then cut through all layers
along a line that runs from
point A to point B (from
dot to dot) and carefully

unfold all the pieces.

The universal molecule has an interesting prop-
erty: it enables you to make any convex polygon
from a folded sheet of paper with a single straight
cut. The “one-cut” problem was independently
solved for all polygons, including concave and
multiple ones, by University of Waterloo grad
student Erik Demaine, now an assistant professor
at MIT, whose research revolves around folding of
all kinds. Demaine’s cutting algorithm bears a

In much of science and engineering, the most productive way to deal with a

problem is to turn it into one that somebody else has either already solved or

proven impossible. Or, put another way, the key to productivity is letting

dead guys do your work for you.

surprisingly close relationship to several issues in
pure uncut origami design. The creases’ precise
locations within a universal molecule depend on
the polygon’s size and shape and on the lengths of
the edges of the tree graph. If you freeze the poly-
gon but shrink the graph, the universal molecule
evolves toward, and eventually becomes, the solu-
tion to the one-cut problem.

I applied Demaine’s algorithm for multiple
concave polygons to create the one-cut puzzle
above. First, fold the figure—which is, in itself,
something of a challenge. Then cut along the
dotted line that runs from A to B and unfold
the paper. If you've done it correctly, you should
obtain the initials of a well-known institution of
higher learning.

Let’s turn now to the concept of efficiency,
around which many computational-geometry
problems revolve. For example, the usual goal
of the traveling-salesman problem is to find the
shortest route among the salesman’s cities. In
origami design, the most efficient crease pattern
is the one that gives the largest possible base for a
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given tree graph and a given-sized sheet of paper.

We measure a base’s efficiency by 7, which we
call the “scale”; it quantifies how large the finished
base is relative to the size of the unfolded square,
whose sides we define to be 1 unit long. If m is
very small, then all the distances specified by the
tree graph are short. The leaf vertices are close
together and you can always find a set of them that
satisfies all possible path inequalities—in fact,
there will be many possible arrangements. But
these bases will be very small and, because all that
paper must be tucked into them somewhere, they
will also be thick, and difficult to fold. On the
other hand, if 7 is made too large, no arrangement
of points will work. If we have two flaps, each 1
unit long, then the separation between their leaf
vertices must be at least 2 units, and you can’t fit
two points that far apart into a 1-unit square.
Somewhere between the possible and the impos-
sible lies the most efficient base—a crease pattern
whose leaf-vertex arrangement satisfies all possible
path inequalities for the largest possible value of 7.

In much of science and engineering, the most
productive way to deal with a problem is to turn
it into one that somebody else has either already
solved or proven impossible. Or, put another way,
the key to productivity is letting dead guys do
your work for you. In this case, the problem can
be posed in a form known as a “nonlinear con-
strained optimization,” namely: “find a set of
variables (the scale 7, and the coordinates of the
leaf nodes in the crease pattern) that maximizes
the value of m subject to a set of inequalities (the
path conditions and inequalities that constrain all
points to the square of paper).” Thankfully, non-
linear constrained optimization problems have
been thoroughly studied by computer scientists.
Finding the provably best possible solution is
often computationally intractable, but fast, efficient
algorithms for near-optimal solutions are known.
“Good enough for government work” is also usual-
ly good enough for origami design.
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Calculating the crease

pattern for this scorpion

base required solving a

complex optimization

problem using CFSQP.

Over the 1990s I developed a computer model
of tree graphs, bases, and crease patterns and
combined it with CFSQP, a nonlinear constrained
optimization code created by Andre Tits and his
research group at the University of Maryland. The
resulting program, TreeMaker, does exactly what
I speculated about in 1989; the user enters a tree
graph and the software performs the optimization
and finds the base’s full crease pattern, which may
then be transformed into a finished model—like
the scorpion below—using common origami shap-
ing techniques. Using TreeMaker, I've been able
to design many figures whose complexity is consid-
erably beyond what I (or others) could do by hand.

It turns out that these algorithms are good for
more than just making cool animals. The theory
of foldable paper also describes what’s possible for
other materials: cloth, metal, plastic, and so on.

One of the most direct applications has been in
modeling airbags for cars. An airbag must inflate
in a few milliseconds and be firm enough to stop
a rapidly accelerating body, yet provide cushion-
ing. Hitting a rigidly inflated, brick-hard airbag
could do as much damage as no airbag at all, and
an airbag must work for small children and large
adults over a wide range of collision speeds and
impact angles. So airbag design involves a lot of
computer simulation—if your client is Mercedes-
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Origami tree theory works
best for subjects that can
be approximated by a stick
figure. It is especially
suited to insects like this
cicada, in which each of
the legs, wings, antennae,
and body can be repre-
sented by an edge of the
tree graph.

Benz, you don’t want to crash more cars than you
absolutely have to. The simulations start with the
airbag folded up into a small packet and tucked
into the (simulated) steering wheel or dashboard.

And that’s where the problem arises. While flat-
tening an airbag in real life is fairly easy—you just
squash all the air out of it—simulating the process
is quite a challenge. You need to treat the airbag
as a rigid object, as if it were made out of card-
board; find creases that flatten it; and then fold
it up into a small packet. Several years ago, I
was contacted by an airbag-design firm, and the
universal molecule proved to be just the solution.
Thus, origami can not only make beautiful art; it
can save lives.

Origami can also expand our view of the heavens.
Eyeglass, a brainchild of the Lawrence Livermore
National Laboratory, is a space telescope with a
projected 100-meter aperture that would be able
to examine Earth-like planets around nearby stars.

Eyeglass is a radical new design, but also a very
old one. Most high-performance telescopes, like
the Hubble Space Telescope, are “reflective.”
Their main optical element is a curved mirror,
which lets the telescope be fairly short—just a few
times the diameter of the lens. The Hubble, with
its 2.4-meter-diameter mirror, is just 13 meters
long. But “transmissive” telescopes, like Galileo
and the pirates of the Caribbean used, are tubes
with lenses at each end. Transmissive telescopes
are by their nature much longer than the lens
diameter, and one with a 100-meter lens would
need to be thousands of meters long. This does
not seem, on first consideration, like a good thing.

But there’s a lot of space in space. When the
nearest interfering object is 40,000 kilometers
away, a kilometer or two doesn’t matter much.
Even better, you don’t actually need to build a
tube between the two lenses—simply put your
main lens into one orbit, and the other lens plus
the camera and associated electronics into another
orbit a few kilometers away.
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Lang in front of the five-
meter Eyeglass prototype
at Lawrence Livermore

National Laboratory.

PICTURE CREDITS: 8,
10, 12-18, — Robert Lang;
19 — Rod Hyde, LLNL
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Eyeglass will use a diffractive lens—a large sheet
of glass or plastic with precise grooves machined
into its surface, like the lens on an overhead-
transparency projector. A thin plastic lens wouldn’t
be very stiff or strong, of course, but in orbit, this
doesn’t matter.

But how do you get it up there in good shape?
That 100-meter sheet of plastic is going to have
to get crumpled, folded, or otherwise stuffed into a
tube about four meters in diameter and 10 meters
long, like a sleeping bag going into a stuff sack.
Although diffractive lenses have looser tolerances
than mirrors, one thing they can’t tolerate is being
crumpled up. The only way such a surface could
go into a rocket would be if it were collapsed along
a precise set of creases carefully laid out so as not
to degrade the optical performance.

Roderick Hyde and his colleagues at Livermore’s
diffractive optics group discovered that a folding,
origami-based solar panel designed by Koryo
Miura had powered Japan’s Space Flyer Unit back
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in 1995. Further research led Hyde to my own
work, and a phone call revealed the happy coinci-
dence that I lived just five miles from his lab.
Over the next few months, I met with the Eye-
glass team several times and adapted several
origami structures for their consideration. They
needed something that was radially symmetric, so
that it could be spin-stabilized; would collapse on
a finite number of creases; and would then fit into
a cylinder. They chose the “Umbrella,” which,
when furled, looks like a collapsible umbrella.
This design can easily be scaled up, has mass-
producible parts, and folds from a large flat disk
down to a much smaller flanged cylinder. A five-
meter prototype has been built, and when un-
folded and hung in a test rig, it successfully
focused an expanded laser beam fired at it from
100 meters away.

As often happens, once you solve one problem,
four or five or ten new ones pop up. Over the past
two years, MIT’s Demaine and I have collabora-
tively extended origami tree theory to address
crease patterns with regular angles, and the
construction of two-dimensional patterns and
three-dimensional polyhedra, among other forms.
(Regular angles means forcing all crease angles to
be some multiple of an integral division of 360°,
for example, multiples of 45°.) Computer-aided
design solved one set of problems but introduced
another: once you've computed the locations of
hundreds of creases, how do you figure out how to
fold them? Forcing the crease angles to be regular
makes it possible to develop tractable step-by-step
folding sequences.

So origami has finally hit the big time, it
appears—at least in the world of computational
geometry. But mathematical origami is also affect-
ing the ancient Japanese craft. There has been a
dramatic shift in the art of origami as geometric
techniques—what one might call “algorithmic”
origami design—have become more widespread.
For years, we concentrated on getting the right
number and lengths of appendages, to the near-
exclusion of considerations such as line, form, and
character. With algorithmic origami design, point
count comes automatically. Origami art and ori-
gami science have sometimes been at odds in the
past, but now the origami designer can focus on
the art of folding, secure in the knowledge that
the science will take care of itself. O
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